版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市滕州市2023-2024学年下学期九年级数学中考模拟试题一、单选题1.计算:(
)A. B. C. D.2.某校拟派一名跳高运动员参加一项校际比赛,对4名跳高运动员进行了多次选拔比赛,他们比赛成绩的平均数和方差如下表:甲乙丙丁平均数169168169168方差6.017.35.019.5根据表中数据,要从中选择一名平均成绩好,且发挥稳定的运动员参加比赛,最合适的人选是(
)A.甲 B.乙 C.丙 D.丁3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.克,将数0.用科学记数法表示为(
)A. B. C. D.4.下列运算正确的是(
)A. B.() C. D.()5.解方程去分母,两边同乘后的式子为()A. B.C. D.6.已知关于x的方程有两个实数根,则的化简结果是(
)A. B.1 C. D.7.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为天,则可列出正确的方程为()A. B.C. D.8.已知一元二次方程的两个根为、,则的值为(
)A.-3 B. C.1 D.9.在同一平面直角坐标系中,一次函数与反比例函数的图象可能是(
)A. B. C. D.10.抛物线与x轴的一个交点为,与y轴交于点C,点D是抛物线的顶点,对称轴为直线,其部分图象如图所示,则以下4个结论:①;②,是抛物线上的两个点,若,且,则;③在轴上有一动点P,当的值最小时,则点P的坐标为;④若关于x的方程无实数根,则b的取值范围是.其中正确的结论有(
)
A.1个 B.2个 C.3个 D.4个二、填空题11.已知函数,则x满足的条件是.12.如图,在直角坐标系中,点是一个光源.木杆两端的坐标分别为,.则木杆在轴上的投影长为.13.关于的一元二次方程有实数根,则的取值范围是.14.如图,扇形中,,以点为圆心,长为半径作弧,交于点,若,则阴影部分的周长为.15.如图,在等腰中,,点为反比例函数(其中)图象上的一点,点在轴正半轴上,过点作,交反比例函数的图象于点,连接交于,若面积为1,则的值为.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,如图1,孩子出生后的天数=3×72+2×71+6=147+14+6=167(天).请根据图2,计算孩子自出生后的天数是天.三、解答题17.(1)计算:
(2)解方程:18.解方程.19.已知,求代数式的值.20.疫情期间,学校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式”的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有______人,在线答疑所在扇形的圆心角度数是______;(2)补全条形统计图;(3)学校共有人,请估计喜欢在线听课的学生大约有多少人;(4)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.21.如图,点,在反比例函数的图象上,连接.(1)求反比例函数的解析式和m的值.(2)在直线l(直线l上各点的纵坐标均为)上是否存在一点P,使得?若不存在,请说明理由;若存在,请求出点P的坐标.22.如图,四边形是平行四边形,连接,交于点,平分交于点,平分交于点,连接,.(1)求证:;(2)若四边形是菱形且,,求四边形的面积.23.如图,一艘轮船在处测得灯塔位于的北偏东方向上,轮船沿着正北方向航行20海里到达处,测得灯塔位于的北偏东方向上,测得港口位于的北偏东方向上.已知港口在灯塔的正北方向上.
(1)填空:度,度;(2)求灯塔到轮船航线的距离(结果保留根号);(3)求港口与灯塔的距离(结果保留根号).24.如图,已知是的直径,是的弦,点P是外的一点,,垂足为点C,与相交于点E,连接,且,延长交的延长线于点F.(1)求证:是的切线;(2)若,,,求的长.25.如图,抛物线与轴交于两点(点在点的左侧),点的坐标为,与轴交于点,直线与轴交于点.动点在抛物线上运动,过点作轴,垂足为点,交直线于点.(1)求抛物线的表达式;(2)当点在线段上时,的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点在运动过程中,能否使以为顶点的三角形是以为腰的等腰直角三角形?若存在,请直接写出点的坐标.答案:1.B2.C3.A4.C5.A6.A7.B8.D9.A10.A11.且12.13.且14.15.16.10917.(1);(2),.18.无解19.220.(1)解:(人),即本次调查人数有人,“在线答疑”的人数为(人),在扇形图中的圆心角度数为;故,;(2)解:补全条形统计图如图所示:;(3)解:(人),答:估计喜欢在线听课的学生大约有人;(4)解:四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用、、、表示,画树状图如图:共有个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有个,甲、乙两名同学喜欢同一种在线学习方式的概率为.21.1)∵点,在反比例函数的图象上,∴.∴.∴.(2)存在.由(1)可得,,.设经过点A,B的直线的解析式为.则解得∴直线的解析式为.过点O作,交直线于一点,则这个点即为点P.由平行线之间的距离处处相等,可以得出.∴直线的直线解析式为.∴当时,,此时点.22.(1)证明:四边形是平行四边形,,,,平分,平分,,,,,,,,,四边形是平行四边形,,.(2)解:由(1)知,,四边形是菱形,,,,四边形的菱形,,,,,,,是等边三角形,,,,,,,四边形的面积.23.(1)30,45(2)灯塔到轮船航线的距离为海里(3)港口与灯塔的距离为海里24.(1)证明:∵,∴,∵,∴,∵,∴,∵,∴,则,∴,即,∴是的切线;(2)解:∵,,∴,∵,∴,∵,∴,∵是的切线,∴,则,∴,∴,根据勾股定理可得:,,∴,∴,∴根据勾股定理可得:.25.(1)解:∵抛物线过点和,∴,解得,∴抛物线的表达式为;(2)解:对于直线,令,则,∴,设,且,∴,,∴,∴,∵,对称轴为直线,∴时,的值随的增大而增大,∴当,有最大值,最大值为;(3)解:∵轴,∴当是以为腰的等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全文化建设与企业安全绩效-深度研究
- 智慧城市技术应用-第2篇-深度研究
- 情感认知机制探讨-深度研究
- 断路器智能化控制策略-深度研究
- 人工智能控制算法-深度研究
- 建筑材料可持续发展-深度研究
- 二零二五年度别墅庭院景观植物病虫害防治合同2篇
- 2025年城乡一体化畜牧饲养产业合作框架合同4篇
- 2025年广西英华国际职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 人力资源战略与组织发展-深度研究
- 2024年发电厂交接班管理制度(二篇)
- 《数学课程标准》义务教育2022年修订版(原版)
- 农机维修市场前景分析
- HG+20231-2014化学工业建设项目试车规范
- 汇款账户变更协议
- 电力系统动态仿真与建模
- 虾皮shopee新手卖家考试题库及答案
- 四川省宜宾市2023-2024学年八年级上学期期末义务教育阶段教学质量监测英语试题
- 价值医疗的概念 实践及其实现路径
- 2024年中国华能集团燃料有限公司招聘笔试参考题库含答案解析
- 《红楼梦》中的男性形象解读
评论
0/150
提交评论