




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北宜昌2024届中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85° B.105° C.125° D.160°2.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形3.cos30°的值为(
)A.1
B.
C.
D.4.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是()A.a<3B.a>3C.a<﹣3D.a>﹣35.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.46.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4B.﹣4C.3D.﹣37.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A. B. C. D.8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个 B.15个 C.13个 D.12个9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知点C为反比例函数上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.12.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.13.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.15.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.16.分解因式:3ax2﹣3ay2=_____.三、解答题(共8题,共72分)17.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)18.(8分)如图,一次函数y=﹣12x+52的图象与反比例函数y=(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.19.(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.20.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?21.(8分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?22.(10分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.23.(12分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.24.如图,已知:,,,求证:.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.2、C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、D【解析】cos30°=.故选D.4、B【解析】试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.考点:一元二次方程与函数5、C【解析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6、A【解析】
根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=-ba,x1x2=7、D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.8、D【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,
∵摸到红色球的频率稳定在25%左右,
∴口袋中得到红色球的概率为25%,
∴,
解得:x=12,
经检验x=12是原方程的根,
故白球的个数为12个.
故选:D.【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.9、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.10、D【解析】
根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.
故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】
解:由于点C为反比例函数上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.12、【解析】
直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.13、【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:故答案为:.【点睛】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.14、(6053,2).【解析】
根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.15、1【解析】
根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【详解】设小明的速度为akm/h,小亮的速度为bkm/h,,解得,,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.16、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【点睛】本题考查提公因式法与公式法的综合运用.三、解答题(共8题,共72分)17、B、C两地的距离大约是6千米.【解析】
过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【详解】解:过B作于点D.在中,千米,中,,千米,千米.答:B、C两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.18、(1)y=2x(2)(0,【解析】
(1)根据反比例函数比例系数k的几何意义得出12【详解】(1)∵反比例函数y==kx∴12∵k>0,∴k=2,故反比例函数的解析式为:y=2x(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,则PA+PB最小.由y=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1设直线A′B的解析式为y=mx+n,则-m+n=24m+n=12∴直线A′B的解析式为y=-3∴x=0时,y=1710∴P点坐标为(0,1710【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.19、(1);(2).【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x-1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线,∴可设该一次函数的解析式为:,∵直线过点M(4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x-1;(2)∵点Q(x,y)是该一次函数图象上的点,∴y=2x-1,又∵点Q在直线的下方,如图,∴2x-1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.20、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.【解析】
(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【详解】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.21、(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得解得经检验,是原方程的解.答:第一次购入的空调每台进价是2400元.(2)由(1)知第一次购入空调的台数为24000÷2400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y台空调打折出售,由题意,得解得答:最多可将8台空调打折出售.22、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.【解析】
(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)(元).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石材行业竞争格局分析考核试卷
- 电气机械工程中的机器视觉与图像处理考核试卷
- 纺织业企业创新发展考核试卷
- 母爱让我感动初二语文作文
- 纺织品企业品牌形象设计考核试卷
- 纸张与纸板的功能性测试与评价考核试卷
- 矿产勘查中的知识产权保护与利用考核试卷
- 篷布制造过程中的节能减排技术考核试卷
- 水产罐头市场营销策略考核试卷
- 畜禽产品市场分析与预测考核试卷
- 水肥一体化技术 稿课件
- 作业现场安全监督检查卡(配电)
- 施工班组考核表
- 法理学-(第五版)完整版ppt全套教学教程课件(最新)
- GB∕T 34876-2017 真空技术 真空计 与标准真空计直接比较校准结果的不确定度评定
- 2022年郑州信息科技职业学院职业适应性测试模拟试题及答案解析
- 国际五一劳动节颁奖荣誉晚会动态PPT模板
- 全院CRRT护理技能培训理论考核试题及答案
- 消防安全知识课件PPT(72张)
- 后勤不“后”与“时”俱进——信息技术促幼儿园保育员专业化发展的研究
- 公共厕所除臭工程设计方案和对策
评论
0/150
提交评论