深圳南山区六校联考2024年中考数学四模试卷含解析_第1页
深圳南山区六校联考2024年中考数学四模试卷含解析_第2页
深圳南山区六校联考2024年中考数学四模试卷含解析_第3页
深圳南山区六校联考2024年中考数学四模试卷含解析_第4页
深圳南山区六校联考2024年中考数学四模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳南山区六校联考2024年中考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是()A. B. C. D.2.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2B.3C.4D.53.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.64.二次函数的对称轴是A.直线 B.直线 C.y轴 D.x轴5.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.36.数据”1,2,1,3,1”的众数是()A.1B.1.5C.1.6D.37.如图:在中,平分,平分,且交于,若,则等于()A.75 B.100 C.120 D.1258.下列实数中,无理数是()A.3.14 B.1.01001 C. D.9.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数 B.众数 C.平均数 D.方差10.如图,已知点P是双曲线y=上的一个动点,连结OP,若将线段OP绕点O逆时针旋转90°得到线段OQ,则经过点Q的双曲线的表达式为()A.y= B.y=﹣ C.y= D.y=﹣二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是2312.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.13.图中是两个全等的正五边形,则∠α=______.14.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).15.要使分式有意义,则x的取值范围为_________.16.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.三、解答题(共8题,共72分)17.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?18.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)19.(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.ABC笔试859590口试8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)20.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.21.(8分)如图1所示是一辆直臂高空升降车正在进行外墙装饰作业.图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为2m.当起重臂AC长度为8m,张角∠HAC为118°时,求操作平台C离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)22.(10分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.23.(12分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.24.2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。(1)求小丽随机取出一根筷子是红色的概率;(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.2、A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.3、A【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.4、C【解析】

根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.

故选:C.【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).5、D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.6、A【解析】

众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7、B【解析】

根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.8、C【解析】

先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.9、A【解析】

根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.10、D【解析】

过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.【详解】过P,Q分别作PM⊥x轴,QN⊥x轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋转可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上.故选D.【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】

先根据概率公式得到2+x5+x=2【详解】根据题意得2+x5+x解得x=4.故答案为:4.【点睛】本题考查了概率公式:随机事件A的概率PA=事件12、107°【解析】

过C作d∥a,得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a,∴a∥b,∴a∥b∥d,∵四边形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.13、108°【解析】

先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.14、【解析】

解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD•sin∠ADB=60×=(m).故答案是:.15、x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.16、【解析】

在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案为:.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(共8题,共72分)17、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】

(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为,∴选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18、不需要改道行驶【解析】

解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防车不需要改道行驶.过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.19、(1)90;(2)144度;(3)105,120,75;(4)B【解析】

(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为105、120、75;(4)A的最终得分为=92.5(分),B的最终得分为=98(分),C的最终得分为=84(分),∴B最终当选,故答案为B.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1);(2).【解析】

(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21、5.8【解析】

过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.【详解】解:如图,过点作于点,过点作于点,.又,.∴四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论