




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
挑战2023年中考数学解答题压轴真题汇编专题02锐角三角函数压轴真题训练一.解直角三角形的应用-方向角问题1.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)【解答】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.2.(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.3.(2022•锦州)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).【解答】解:过B作BD⊥AC于D,由题意可知∠ABE=30°,∠BAC=30°,则∠C=180°﹣30°﹣30°﹣70°=50°,在Rt△BCD中,∠C=50°,BC=20(海里),∴BD=BCsin50°≈20×0.766=15.32(海里),在Rt△ABD中,∠BAD=30°,BD=15.32(海里),∴AB=2BD=30.64≈30.6(海里),答:货轮从A到B航行的距离约为30.6海里.二.解直角三角形的应用-仰角俯角问题4.(2022•遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)【解答】解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,∴FB=PH,FH=PB,由i=5:12,可以假设BP=5x,AP=12x,∵PB2+PA2=AB2,∴(5x)2+(12x)2=262,∴x=2或﹣2(舍去),∴PB=FH=10,AP=24,设EF=a米,BF=b米,∵tan∠EBF=,∴≈2,∴a≈2b①,∵tan∠EAH===,∴≈1.2②,由①②得a≈47,b≈23.5,答:塔顶到地面的高度EF约为47米.5.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)【解答】解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.6.(2022•阜新)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα=.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:≈1.7)【解答】解:(1)过点D作DE⊥BC,交BC的延长线于点E,∵在Rt△DCE中,cosα=,CD=15m,∴(m).∴(m).答:C,D两点的高度差为9m.(2)过点D作DF⊥AB于F,由题意可得BF=DE,DF=BE,设AF=xm,在Rt△ADF中,tan∠ADF=tan30°=,解得DF=x,在Rt△ABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE﹣CE=DF﹣CE=(x﹣12)m,tan60°==,解得,经检验,是原方程的解且符合题意,∴AB=++9≈24(m).答:居民楼的高度AB约为24m.7.(2022•襄阳)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD为10m,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)【解答】解:由题意得,∠BAD=45°,∠DAC=61°,在Rt△ABD中,∠BAD=45°,AD=10m,∴BD=AD=10m,在Rt△ACD中,∠DAC=61°,tan61°=≈1.80,解得CD≈18,∴BC=BD+CD=10+18=28(m).∴烈士塔的高度约为28m.8.(2022•鞍山)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m的励志条幅(即GF=8m).小亮同学想知道条幅的底端F到地面的距离,他的测量过程如下:如图,首先他站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼条幅方向前行12m到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为45°,若AB,CD均为1.65m(即四边形ABDC为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:设AC与GE相交于点H,由题意得:AB=CD=HE=1.65米,AC=BD=12米,∠AHG=90°,设CH=x米,∴AH=AC+CH=(12+x)米,在Rt△CHF中,∠FCH=45°,∴FH=CH•tan45°=x(米),∵GF=8米,∴GH=GF+FH=(8+x)米,在Rt△AHG中,∠GAH=37°,∴tan37°==≈0.75,解得:x=4,经检验:x=4是原方程的根,∴FE=FH+HE=5.65≈5.7(米),∴条幅底端F到地面的距离FE的长度约为5.7米.三.解直角三角形的应用-坡度坡角问题9.(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.(参考数据:≈1.41,≈1.73.结果精确到0.1m)【解答】解:在Rt△BCD中,∵BC的坡度为i1=1:1,∴=1,∴CD=BD=20米,在Rt△ACD中,∵AC的坡度为i2=1:,∴=,∴AD=CD=20(米),∴AB=AD﹣BD=20﹣20≈14.6(米),∴背水坡新起点A与原起点B之间的距离约为14.6米.10.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,在Rt△CDF中,∠CFD=90°,∠DCF=30°,则DF=CD=90(cm),CF=CD•cos∠DCF=180×=90(cm),由题意得:=,即=,解得:EF=135,∴BE=BC+CF+EF=(255+90)cm,则=,解得:AB=170+60,答:立柱AB的高度为(170+60)cm.四.解直角三角形的应用(共2小题)11.(2022•东营)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73)【解答】解:在Rt△ADB中,∠ADB=60°,tan∠ADB=,∴BD==,在Rt△ABC中,∠C=45°,tan∠C=,∴BC==AB,∵BC﹣BD=CD=33m,∴AB﹣=33,∴AB=≈78(m).答:主塔AB的高约为78m.12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理资格认证特点分析试题及答案
- 财务决策实现方法试题及答案2025
- 银行管理理论与实务应用的结合研究试题及答案
- 证券从业资格证考试独到理解与掌握试题及答案
- 2025年证券从业资格证考生注意事项试题及答案
- 青海省玉树藏族自治州本年度(2025)小学一年级数学统编版阶段练习(下学期)试卷及答案
- 八年级历史下册 第一单元 中华人民共和国的成立和巩固 第3课 土地改革教学设计设计(pdf) 新人教版
- 项目管理技能掌握的试题及答案
- 2025年注册会计师考试复习与实践结合试题及答案
- 微生物检验师同学必看试题及答案指导
- 福建省龙岩市龙岩市一级校2024-2025学年高一下学期4月期中联考数学试题(含答案)
- 2024-2025学年七年级数学湘教版(2024)下学期期中考试模拟卷B卷(含解析)
- 白中英数字逻辑习题答案课件
- 强夯监理实施细则
- 《财务风险的识别与评估管理国内外文献综述》
- 井盖管理应急预案
- 鹌鹑蛋脱壳机的设计
- 行为安全观察behaviorbasedsafety研究复习过程
- 动火作业风险告知牌
- 锅炉专业术语解释及英文翻译对照
- 《小石潭记》作业设计
评论
0/150
提交评论