综合解析-人教版数学八年级上册期中综合复习试题(解析版)_第1页
综合解析-人教版数学八年级上册期中综合复习试题(解析版)_第2页
综合解析-人教版数学八年级上册期中综合复习试题(解析版)_第3页
综合解析-人教版数学八年级上册期中综合复习试题(解析版)_第4页
综合解析-人教版数学八年级上册期中综合复习试题(解析版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法正确的是(

)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.42、如图,中,是延长线上一点,且,则的度数是(

)A. B. C. D.3、如图,已知在四边形中,,平分,,,,则四边形的面积是(

)A.24 B.30 C.36 D.424、如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.15、下列多边形中,内角和最大的是(

)A. B.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······二、多选题(5小题,每小题4分,共计20分)1、如图,在方格中,以为一边作,使之与全等,则在,,,四个点中,符合条件的点有(

)A. B. C. D.2、如图,O是正六边形ABCDE的中心,下列图形不可能由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF3、如图,若判断,则需要添加的条件是(

)A., B.,C., D.,4、如图,下列条件中,能证明的是()A., B.,C., D.,5、在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,下面判断中正确的是(

)A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······2、如图,已知在四边形中,厘米,厘米,厘米,,点为线段的中点.如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为___________厘米/秒时,能够使与以,,三点所构成的三角形全等.3、一个三角形的周长是偶数,其中的两条边是4和2012,则满足上述条件的三角形的个数是_______个.4、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.5、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为________.四、解答题(5小题,每小题8分,共计40分)1、如图所示,求的度数.2、用反证法证明:一个三角形中不能有两个角是直角.3、已知:如图,点A、B、C、D在一条直线上,.(1)求证:;(2)若,求的度数.4、如图所示,已知FD⊥BC于D,DE⊥AB于E,∠AFD=150°,∠B=∠C,求∠EDF的大小.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······5、在中,,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、、具有怎样的等量关系?请直接写出这个等量关系.-参考答案-一、单选题1、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.2、C【解析】【分析】根据三角形的外角性质求解.【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=130°-55°=75°,故选C.【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.3、B······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】过D作DE⊥AB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.【详解】如图,过D作DE⊥AB交BA的延长线于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四边形的面积故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.4、B【解析】【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选B.【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.5、D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形,其内角和为180°;B、是一个四边形,其内角和为360°;C、是一个五边形,其内角和为540°;D、是一个六边形,其内角和为720°;∴内角和最大的是六边形;故选D.【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.二、多选题1、ACD【解析】【分析】根据全等三角形的对应边相等判断即可.【详解】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:ACD.【考点】此题考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.2、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.【详解】解:O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.3、BC【解析】【分析】已知公共角∠A,根据三角形全等的判定方法对选项依次判定即可;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B.根据SAS判定△ACD≌△ABE,故本选项正确;C.根据AAS判定△ACD≌△ABE,故本选项正确;D.不能判定△ACD≌△ABE,故本选项错误;故选:B、C.【考点】本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.4、ABC【解析】【分析】根据全等三角形的判定方法一一判断即可.【详解】解:A.由,,,根据可以证明,本选项符合题意;B.由,,根据能判断三角形全等,本选项符合题意;C.由,推出,因为,,根据可以证明,本选项符合题意;D.由,,,根据不可以证明,本选项不符合题意;故选:.【考点】本题考查全等三角形的判定和性质,等腰三角形的性质等知识,熟练掌握全等三角形的判定方法是解题的关键.5、ACD【解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等.【详解】解:A选项,添加条件AC=A′C′,可利用SAS判定则△ABC≌△A′B′C′,选项正确,符合题意;B选项,添加条件BC=B′C′,不能判定两个三角形全等,选项不正确;C选项,添加条件∠B=∠B′,可利用ASA判定△ABC≌△A′B′C′,选项正确,符合题意;D选项,添加条件∠C=∠C′,可利用AAS判定△ABC≌△A′B′C′,选项正确,符合题意;故选ACD【考点】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理.三、填空题1、2或【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.2、3或【解析】【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,此时,6=8﹣3t,解得t,∴BP=CQ=2,此时,点Q的运动速度为23厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t,∴点Q的运动速度为6厘米/秒;故答案为:3或.【考点】本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等.3、3【解析】【分析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】设第三边是x,则2008<x<2016.而三角形的周长是偶数,故x为偶数,因而x=2010或2012或2014,满足条件的三角形共有3个.故答案为:3个.【考点】本题考查了三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.5、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30°所对的边等于斜边的一半,再求出DE,得到.【详解】解:的垂直平分线交于点F,(垂直平分线上的点到线段两端点距离相等)∴∵,是角平分线∴∵∴,∴【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键.四、解答题1、.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】首先利用三角新的外角的性质,然后根据多边形的外角和定理即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,又∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【考点】本题考查了三角形的外角的性质以及多边形的外角和是360°,理解定理是关键.2、见解析.【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明.【详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角.【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤.3、(1)见解析;(2)60°【解析】【分析】(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD即可;(2)根据全等三角形的性质和三角形内角和解答即可.【详解】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,∴△EAC≌△FBD(SAS)(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°-40°-80°=60°,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【考点】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.4、∠EDF的大小为60°.【解析】【分析】根据三角形内角和定理以及四边形内角和定理即可求出答案.【详解】解:∵∠AFD=∠C+∠FDC,∠FDC=90°,∠AFD=150°,∴∠C=60°,∵∠B=∠C,∴∠A=60°,∵∠A+∠AED+∠EDF+∠AFD=360°,∴∠EDF=60°.故∠EDF的大小为60°.【考点】本题考查了三角形的内角和定理,四边形内角和定理,解题的关键是熟练三角形内角和定理,本题属于基础题型.5、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论