综合解析人教版数学八年级上册期中模拟考试试题 A卷(解析卷)_第1页
综合解析人教版数学八年级上册期中模拟考试试题 A卷(解析卷)_第2页
综合解析人教版数学八年级上册期中模拟考试试题 A卷(解析卷)_第3页
综合解析人教版数学八年级上册期中模拟考试试题 A卷(解析卷)_第4页
综合解析人教版数学八年级上册期中模拟考试试题 A卷(解析卷)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,点在的延长线上,于点,交于点.若,则的度数为(

).A.65° B.70° C.75° D.85°2、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:53、如图,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌4、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5、观察下列作图痕迹,所作线段为的角平分线的是(

)A. B.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······二、多选题(5小题,每小题4分,共计20分)1、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是(

)A.12米 B.10米 C.15米 D.8米2、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是(

).A.2,2,8 B.5,5,2 C.4,4,4 D.3,3,53、若将一副三角板按如图所示的方式放置,则下列结论正确的是(

)A.∠1=∠2 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C4、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是(

)A.甲 B.乙 C.丙 D.不能确定5、如图,若判断,则需要添加的条件是(

)A., B.,C., D.,第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图所示,在中,D是的中点,点A、F、D、E在同一直线上.请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______2、如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、如图,中,点,分别在,上,与交于点,若,,,则的面积______.4、一个多边形的内角和是外角和的2倍,则这个多边形的边数为___________.5、如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是__cm.四、解答题(5小题,每小题8分,共计40分)1、如图,已知,,,求证:.2、如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.3、如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.4、已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.5、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,,.(1)求证:;(2)求的度数.······线······○······封······○······密······○······内······○······号学······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······-参考答案-一、单选题1、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:∵∴,∴.故选B.【考点】本题考查垂直的性质,解题关键在于在证明2、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.3、B【解析】【分析】观察图形,运用SAS可判定△ABO与△ADO全等.【详解】解:∵AB=AD,∠BAO=∠DAO,AO是公共边,

∴△ABO≌△ADO(SAS).故选B.【考点】本题考查全等三角形的判定,属基础题,比较简单.4、D【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······利用全等三角形的判定方法进行分析即可.【详解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键.5、C【解析】【分析】根据角平分线画法逐一进行判断即可.【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:C.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点.二、多选题1、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中,<<<<符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.2、BC【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边.结合题目条件“周长为12”,可得出正确答案.【详解】A.2+2<8,不能组成三角形,排除.B.5+5>2,5-5<2;且5+5+2=12;满足题意.C.4+4>4,4-4<4;且4+4+4=12;满足题意.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选:BC.【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”.3、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAD=90°+60°=150°,∴∠D+∠CAD=180°,∴AC∥DE,故B正确,∵∠2=30°,∴∠1=∠3=60°,∵,∴,不平行,故C错误,∵∠2=30°,∴∠1=∠3=60°,由三角形的内角和定理可得:∴∠4=45°,∴,故D正确.故选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算.4、BC【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【详解】解:已知△ABC中,∠B=50°,∠C=58°,∠A=72°,BC=a,AB=c,AC=b,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和△ABC全等;图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【考点】本题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.5、BC【解析】【分析】已知公共角∠A,根据三角形全等的判定方法对选项依次判定即可;【详解】解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B.根据SAS判定△ACD≌△ABE,故本选项正确;C.根据AAS判定△ACD≌△ABE,故本选项正确;D.不能判定△ACD≌△ABE,故本选项错误;故选:B、C.【考点】本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.三、填空题1、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可.【详解】解:∵D是的中点,∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2、40°【解析】【详解】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【考点】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.3、7.5.【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解.【详解】如下图所示,连接,∵,,,∴,∴,,∴,,设,,∴,,由,可得,,解得,∴,,.故答案为:7.5.【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键.4、6【解析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,∴内角和是720度,,∴这个多边形是六边形.5、4cm【解析】【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高.这条边叫做底.【详解】因为AC⊥BC,所以三角形ABD中,BD边上的高是:AC=4cm故答案为:4cm【考点】考核知识点:三角形的高.理解三角形的高的定义是关键.四、解答题1、证明见解析.【解析】【分析】利用SSS可证明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根据三角形外角的性质即可得∠3=∠BAD+∠ABD,即可得结论.【详解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2、∠DAE=5°,∠BOA=120°【解析】【分析】由∠CAB=50°,∠C=60°可求出∠ABC;由AE、BF是角平分线,得到∠CBF=∠ABF=35°,∠EAF=∠EAB=25°;由AD是高,得到∠DAC;从而计算得到∠DAE和∠BOA.【详解】∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°∵AE、BF是角平分线∴∠CBF=∠ABF=35°,∠EAF=∠EAB=25°又∵AD是高∴∠ADC=90°······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠DAE=∠DAC﹣∠EAF=5°又∵∠ABF=35°,∠EAB=25°∴∠BOA=180°-∠EAB-∠ABF=180°-25°-35°=120°∴∠DAE=5°,∠BOA=120°.【考点】本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解.3、35º【解析】【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【详解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C,在四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论