数学建模案例(一):最佳视角 高一下学期数学湘教版(2019)必修第二册_第1页
数学建模案例(一):最佳视角 高一下学期数学湘教版(2019)必修第二册_第2页
数学建模案例(一):最佳视角 高一下学期数学湘教版(2019)必修第二册_第3页
数学建模案例(一):最佳视角 高一下学期数学湘教版(2019)必修第二册_第4页
数学建模案例(一):最佳视角 高一下学期数学湘教版(2019)必修第二册_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章

数学建模6.3

数学建模案例(一):最佳视角#b#了解视角的概念,运用所学知识解决实际测量的高度问题,掌握数学建模活动的完整过程.(数学建模)一、问题背景

二、模型的建立与求解

1.建立数学模型

2.模型的进一步讨论

按照数学建模的流程,还需要对模型求解的正确性进行检验.以观赏一幅悬挂在美术馆墙面上的画为例,参观者脚步的左右移动和前后移动分别对应于通过脚步移动寻找人眼与画作在横向以及纵向上的最大张角.你可以选择模型所得的最佳视角的位置以及其他的位置,体验模型结果的合理性.

而从最佳视角问题本身来看,也可对上述问题做进一步拓展.例如:

(1)在电影或电视拍摄过程中,如果升降机的水平位置固定,现场指挥人员经常对他乘坐的升降机的高度进行调整以拍摄空中的场景.如何求出工作人员的位置使其观看场景最清楚?

(2)当人们眺望对面山顶的景物(如岩崖画、观光塔)时,可能位于水平地面上、有一定坡度的山坡上或者上述两者兼而有之.如何找出视野最清楚的观景位置?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论