




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1 3IntroductiontoMatlab3IntroductiontoMatlabWhatisaMatlabToolboxesarespecializedcollectionsofMatlabWhydoweneedthe4WhattypeoftoolboxesdoesMatlab4WhattypeoftoolboxesdoesMatlab▪▪ParallelComputing数学、统计与优SymbolicMathPartialDifferentialEquationStatisticsandMachineLearningCurveFittingOptimizationNeuralNetworkModel-BasedCalibrationControlSystemToolboxFuzzyLogicToolboxRobustControlModelPredictiveControlToolboxAerospaceToolboxRoboticsSystem▪▪▪▪▪▪▪5WhattypeoftoolboxesdoesMatlab5WhattypeoftoolboxesdoesMatlab信号处无线DSPSystemToolboxAudioSystemToolboxWaveletToolboxRFToolboxLTESystemToolboxWLANSystem▪▪▪▪▪▪▪▪▪▪图像处理与计算机视ImageProcessingToolboxVisionHDLToolboxMappingToolbox▪▪▪▪▪测试&DataAcquisitionToolboxImageAcquisitionToolboxOPCToolboxVehicleNetwork▪▪▪▪▪6Whattypeoftoolboxesdoes6WhattypeoftoolboxesdoesMatlab计算FinancialDatafeedToolboxDatabaseToolboxSpreadsheetLink(forMicrosoftExcel)FinancialInstrumentsToolbox▪▪▪▪▪▪▪计算生Bioinformatics代码MATLABHDLVisionHDLHDLFilterDesignHDLFixed-Point7Whattypeoftoolboxes7WhattypeoftoolboxesdoesMatlabMATLABMATLABCompilerSpreadsheetLink(forMicrosoftMATLABProductionDatabaseMATLABReportFromDeepLearning8WherecanI8WherecanIfindinformationregarding9ClusteringusingtheStatistics9ClusteringusingtheStatisticsandMachineLearningToolboxTheMatlabStatisticsandMachineLearningToolboxhasmanyStatisticsandDataimportandexport,descriptivestatistics,visualizationProbabilityDistributionsDatafrequencymodels,randomsamplegeneration,parameterestimationHypothesisTestst-test,F-test,chi-squaregoodness-of-fittest,andClusterUnsupervisedlearningtechniquestofindnaturalgroupingsandpatternsinAnalysisofvarianceandcovariance,multivariateANOVA,repeatedmeasuresANOVALinear,generalizedlinear,nonlinear,andnonparametrictechniquesforsupervisedSupervisedlearningalgorithmsforbinaryandmulticlassproblemsDimensionalityReductionPCA,factoranalysis,nonnegativematrixfactorization,sequentialfeatureselection,andmoreIndustrialStatisticsDesignofexperiments(DOE);survivalandreliabilityanalysis;statisticalprocesscontrolSpeedUpStatisticalComputationsParallelordistributedcomputationofstatistical▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪WhatisAWhatisAwaytoform'naturalgroupings'inyourItisaformofunsupervisedlearning–yougenerallydoNOThaveexamplesdemonstratinghowthedatashouldbegroupedWhydoweneedMarketsegmentation:Assistmarketerstoidentifydistinctsub-groupsofcustomersinorderWhydoweneedMarketsegmentation:Assistmarketerstoidentifydistinctsub-groupsofcustomersinordertodeveloptargetedmarketingprogramsGuiltbyassoito”:IdentifyinggroupsofgenesthatbehavesimilarlyunderasetofdifferentexperimentalClusterClusterClusterClustering Clustering K-means K-means K-meansThek-meansalgorithmK-meansThek-meansalgorithmpartitionsthedataintokexclusiveFeatureFeatureK-meansThek-meansalgorithmpartitionsK-meansThek-meansalgorithmpartitionsthedataintokexclusiveK=FeatureFeatureK-meansThek-meansalgorithmpartitionsK-meansThek-meansalgorithmpartitionsthedataintokmutuallyexclusiveK=FeatureFeatureHowdoesitK-meansFormalminimizetotalintra-clusterKd(xjK-meansFormalminimizetotalintra-clusterKd(xj,iSiistheithcluster(i=1,2,...,i1xjµiistheithcentroidofallthepointsinclusterdisadistanceOptimalSuboptimalK-meansIfweknewK-meansIfweknewtheclusterassignmentofeachwecouldeasilycomputethecentroidsIfweknewthecentroidpositionswecouldassigneachpointtoaButwedon’tknowneitherofK-meansAlgorithmChooseK-meansAlgorithmChoosethenumberofclusters,RandomlychooseinitialpositionsofKAssigneachofthepointstothe“nat(dependsondistanceK=K-meansAlgorithmK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKAssigneachofthepointstothe“astn”(dependsondistanceK=K-meansAlgorithmChooseK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKAssigneachofthepointstothe“artend”ondistancemeasure)CalculatetheintraclusterRe-computecentroidIfsolutionconverges→K=K-meansAlgorithmChooseK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKAssigneachofthepointstothe“restetrod”ondistancemeasure)CalculatetheintraclusterRe-computecentroidIfsolutionconverges→K=K-meansAlgorithmChoosethenumberK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKcentroidsAssigneachofthepointstothe“restetrod”ondistancemeasure)CalculatetheintraclusterRe-computecentroidpositionsIfsolutionconverges→Stop!K=▪▪▪▪▪▪K-meansAlgorithmChooseK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKAssigneachofthepointstothe“restetrod”ondistancemeasure)CalculatetheintraclusterRe-computecentroidIfsolutionconverges→K=K-meansAlgorithmChooseK-meansAlgorithmChoosethenumberofclusters-RandomlychooseinitialpositionsofKAssigneachofthepointstothe“artend”ondistancemeasure)CalculatetheintraclusterRe-computecentroidIfsolution(theintraclustervarianceddnchange)→K=K-means:otherthingsweneedtoHowshouldK-means:otherthingsweneedtoHowshouldwechooseWhattypeofdistancemeasurescanweuse,andhowtochoosebetweenthem?((x2–x1)2+–y1)2)Sumofabsolute|x2–x1|+|y2–1–tAndK-means:otherthingsweneedK-means:otherthingsweneedtoDoesthealgorithmconvergencetoanoptimalCanyouthinkofstrategiesforsolvingBeforewelearnhowtoBeforewelearnhowtodoK-meansinMatlablet’slookatsomerealdata…Inthe1920's,botanistscollectedmeasurementsonsepalsepalpetalpetalof150iris,50fromeachofthreespecies(setosa,versicolor,ThemeasurementsbecameknownasFisher'sirisFisher’sIrisload4Fisher’sIrisload4SampleSampleSampleSample>>1>>'versicolor''virginica','virginica','setosa','setosa','setosa','setosa',FeatureFeatureFeatureFeatureExploringcorrelationsintheExploringcorrelationsintheFisher’sIrisparam_names={'sepallength','sepalwidth','petallength','petaltext([.05.30.55.80],[-0.1,-0.1,-0.1,-0.1],param_names,text([-0.12,-0.12,-0.12,-0.12],[0.800.550.300.05],'FontSize',12,ThepetallengthandwidtharehighlyVisualizingFisher’sIris%76543218276545SepalSepalVisualizingFisher’sIris%76543218276545SepalSepalPetal4K-meansusingDoingK-meansinMatlabis=K-meansusingDoingK-meansinMatlabis=BydefaultkmeansusessquaredEuclidiandistanceTheKTheclusterbelongstoK-meansusingDisplayingthealgorithm=K-meansusingDisplayingthealgorithm=210sumof123441112=K-meansusingClusteringptsymbK-meansusingClusteringptsymb=%Plotclusterpointsfori=1:2clust=(cidx2==i);holdNoticethatclusteringisdonebutvisualization%Plotclustercentroidholdxlabel('SepalLength');ylabel('SepalWidth');zlabel('Petalgridtitle('IrisdataclusteredwithK-meanswhereK=K-meansusingClusteringCluster765Cluster43218276544SepalSepalPetal K-meansusingClusteringCluster765Cluster43218276544SepalSepalPetal K-meansusingClustering765becausetheupperclusterisspreadout,thesethreepointsareclosertothecentroidofthelowerclusteruppercluster43218276544SepalSepalPetal K-meansusingClustering765becausetheupperclusterisspreadout,thesethreepointsareclosertothecentroidofthelowerclusteruppercluster43218276544SepalSepalPetal K-meansusingIncreasingthenumberofK-meansusingIncreasingthenumberof=11112430sumdistances=123455K-meansusingClusteringK-meansusingClusteringfori=clust=(cidx3==i);holdonholdxlabel('SepalLength');ylabel('SepalWidth');zlabel('PetalgridK-meansusingK-meansusingK-meansusingAvoidinglocalminimausingareplicates=4K-meansusingAvoidinglocalminimausingareplicates=458=====K-meansusing76543218276544SepalSepalPetal K-meansusing76543218276544SepalSepalPetal K-meansusing=7Wecanusethecosfunctionasadistancemeasurebetween6543218276544SepalSepalPetal K-meansusing=7Wecanusethecosfunctionasadistancemeasurebetween6543218276544SepalSepalPetal K-meansusingWhichdistancemeasureisK-meansusingWhichdistancemeasureismoreeWeknowthelabelofeachsample.Wecancompareclustersdiscoveredbykmeanstotheactualflowertypes.Note:usuallyinunsupervisedlearningwedoNOTknowthelabelsoftheK-meansusing%TestingtheclusteringaccuracyK-meansusing%Testingtheclusteringaccuracyfori=clust=find(cidx_cos==i);holdonxlabel('Sepalylabel('SepalWidth');gridonmiss=find(cidx_cos===holdK-meansusingCosinebaseddistance:576543218276544SepalPetal K-meansusingCosinebaseddistance:576543218276544SepalPetal K-meansusingEuclideanbaseddistance:1476543218276544SepalSepalPetal K-meansusingEuclideanbaseddistance:1476543218276544SepalSepalPetal HowtochooseWeneedaquantitativemethodtoHowtochooseWeneedaquantitativemethodtoassessthequalityofaThesilhouettevalueofapointisameasureofhowsimilarapointispointsinitsownclustercomparedtopointsinother-Formaldefinition:s(i)max(a(i),istheaveragedistanceofthepointitotheotherpointsinitsownclusterd(i,C)istheaveragedistanceofthepointitotheotherpointsintheclusteristheminimald(i,C)overallclustersotherthanHowtochooseSilhouettevaluesrangesfromHowtochooseSilhouettevaluesrangesfrom-1to→~=objectiswell→~objectisontheborderbetween2→~=-ObjectisclassifiedThesilhouettecoefficientistheaveragesilhouettevalueoverItisaquantitativemeasurethatcanassessthequalityofHowtochooseToHowtochooseTodemonstratetheutilityofthesilhouettecoefficientwecantestitonsyntheticdataforwhichweknowthenumberofx1=randn(1,100);y1=randn(1,scatter(x1,y1,25,[100],holdx2=randn(1,100)+3;y2=randn(1,scatter(x2,y2,25,[010],+x3=randn(1,100)+8;y3=randn(1,100);scatter(x3,y3,25,[001],'filled');holdHowtochooseTodemonstratetheutilityofthesilhouettecoefficientwecantestitonsyntheticdataforwhichweknowthenumberofWeknowthatKis65432100HowtochooseTodemonstratetheutilityofthesilhouettecoefficientwecantestitonsyntheticdataforwhichweknowthenumberofWeknowthatKis654321002468HowtochooseWerunthek-meansalgorithmfordifferentx=[x1,x2,y=[y1,data=[x',K====K=K=6665554443332221110000505 05HowtochooseWerunthek-meansalgorithmfordifferentx=[x1,x2,y=[y1,data=[x',K====K=K=6665554443332221110000505 05Howtochoose>>[silh2,h]=>>1arepoorly201Howtochoose>>[silh2,h]=>>1arepoorly201Howtochoose>>[silh3,h]>>12301SilhouetteHowtochoose>>[silh3,h]>>12301SilhouetteHowtochoose>>[silh4,h]>>12340SilhouetteHowtochoose>>[silh4,h]>>12340Silhouette1HowtochooseOptimalSilhouettevalueisachievedwhenK=32345K6HowtochooseOptimalSilhouettevalueisachievedwhenK=32345K678MeansilhouetteK-means investigateK-means investigategroupinginyourdata,simultaneouslyoveravarietyofscalesAlgorithm1)DeterminethedistancebetweenAlgorithm1)DeterminethedistancebetweeneachpairofdifferentTypesofdistances(Euclidean,correlation,1234512345Algorithm1)DeterminethedistancebetweeneachpairAlgorithm1)Determinethedistancebetweeneachpairof2)IterativelygrouppointsintoabinaryhierarchicaltreeConnecttheclosestpairofpointsandre-computedistance9876Thedistanceatwhichthepairofpointswere34521Algorithm1)DeterminethedistancebetweeneachpairofAlgorithm1)Determinethedistancebetweeneachpairof2)Iterativelygrouppointsintoabinaryhierarchicaltree3)Cutthehierarchicaltreeinto34521Hierarchicalclustering,otherthingsweHierarchicalclustering,otherthingswetoTypesofSinglelinkageiorDistancebetweengroupsisdefinedasthebetweentheclosestpairofpointsfromeachHierarchicalclustering,otherthingsweHierarchicalclustering,otherthingswetoTypesofCompletelinkageibDistancebetweengroupsisdefinedasthedistancebetweenthemostdistantpairofpointsfromtwoHierarchicalclustering,otherHierarchicalclustering,otherthingsweneedtoconsiderTypesofAveragelinkageclustering:Thedistancebetweentwoclustersisdefinedastheaverageofdistancesbetweenallpairsofpoints(ofoppositeHierarchicalclustering,otherthingswetoHierarchicalclustering,otherthingswetoWheretocuttheCuttingatanarbitraryHierarchicalclustering,otherthingsweneedtoconsiderWheretocuttheHierarchicalclustering,otherthingsweneedtoconsiderWheretocutthe▪▪CuttingatanarbitraryCuttingatinconsistencyComparetheheightofeachlinkinthetreewiththeheightsoflinksbelowit:IfapproximatelyequalThislinkexhibitsahighlevelofconsistency.Therearenodistinctdivisionsbetweentheobjectsjoinedatthislevelofthehierarchy.▪IfheightsdifferThislinkissaidtobeinconsistentinrespecttothelinksbelowit.Thisindicatestheborderofanaturaldivisioninadataset.Forformaldefinitionsseetoolbox▪▪HierarchicalclusteringusingLoadtheIris>>HierarchicalclusteringusingLoadtheIris>>load1)Computethedistancesbetweeneach>>euc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设备安装与维护服务合同
- 快递合作协议合同
- 教育在线培训服务协议
- 建筑项目设计及施工合作协议
- 大湾区新兴产业发展项目合作框架协议
- 环保科技项目研发与推广合同
- 总包单位签订分包合同
- 买卖手房反担保合同
- 承包合同养殖合同
- 私人拖拉机买卖合同书
- 第五部分茶艺馆的经营与管理
- 《习作:那一刻-我长大了》课件ppt
- 小学道德与法治课堂生活化教学的策略讲座稿
- 大学生返家乡志愿服务证明
- (新版)网络攻防知识考试题库(含答案)
- 建筑工程资料档案盒侧面标签
- 工程设计变更工程量计算表
- 动力工程及工程热物理专业英语课件
- 幼儿系列故事绘本课件达芬奇想飞-
- 出纳收入支出日记账Excel模板
- 给水排水用格栅除污机通用技术条件
评论
0/150
提交评论