下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于GMM-MRF的高分辨率遥感影像道路提取算法研究的中期报告一、研究背景及意义高分辨率遥感影像的道路提取一直是图像处理领域的研究热点问题之一。道路提取在城市规划、地图制作、交通管理等领域有着广泛的应用。然而,由于道路的形态、材质、颜色等特征复杂多样,再加上遥感图像采集过程中存在噪声、云层等干扰因素,道路提取问题一直未得到很好的解决。当前,道路提取算法主要分为基于规则、基于像素、基于特征和深度学习等四类方法。其中,深度学习方法近年来得到了广泛关注,但其需要大量的数据和计算资源,同时对于遥感影像的鲁棒性仍然存在挑战。因此,基于特征的方法被广泛采用,并取得了不错的效果。本文将基于GMM-MRF模型,结合图像分割、MRF优化等方法,提出一种高效、鲁棒的基于特征的道路提取算法,旨在提高道路提取算法的精度和效率。二、研究内容及方法1.GMM-MRF模型概述本文提出的算法中采用GMM-MRF模型,即基于高斯混合模型(GMM)和马尔可夫随机场(MRF)的模型。具体来说,通过构建GMM对遥感图像进行分割,得到像素点的类别信息,然后以此为基础,通过MRF优化对图像进行道路提取。2.图像分割算法本文采用了一种基于颜色空间和纹理特征的图像分割算法。该算法首先将RGB图像转换到Lab色彩空间,然后利用均值漂移算法对图像进行分割,得到初步的图像分割结果。接着,结合灰度共生矩阵(GLCM)特征对图像进行进一步的细分割。3.MRF优化算法基于图像分割得到的类别信息,可以构建相应的MRF模型,以优化道路提取的结果。本文采用了基于最大后验概率(MAP)准则的MRF优化方法,即通过最小化MRF能量函数,得到最优的道路提取结果。三、预期成果及意义本文预期在道路提取算法方面取得一定的进展,具体有以下几点意义:1.提供了一种高效、鲁棒的基于特征的道路提取方法;2.综合运用了图像分割、GMM-MRF模型和MRF优化等方法,为道路提取问题提供了一种新的解决方案;3.通过实验验证,本文提出的算法比常用的方法有更好的提取效果和鲁棒性。四、进度安排1.初步搭建GMM-MRF模型,已完成;2.完善图像分割算法,进行实验验证,目前正在进行;3.设计MRF优化算法,进行实验验证,计划在下一阶段完成;4.对整个算法进行测试和分析,进一步完善算法。五、参考文献[1]LiB,ManjunathBS,MitraSK.Roadextractionfromaerialimageryusinggraphcuts[J].IEEETransactionsonImageProcessing,2007,16(3):686-699.[2]王耀华,杨锐,王海东.基于能量优化的遥感图像道路提取方法[J].南京大学学报(自然科学),2010,46(4):425-431.[3]吴慧敏,薛毅.基于灰度共生矩阵的图像分割算法[J].光学精密工程,2015,23(11):3206-3213.[4]李清,杨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眼镜行业销售工作总结
- 酒水饮料行业员工激励措施
- 2024年电大电子商务概论考试综合手册
- 创意设计服务协议书(2篇)
- 易错点12 抗日战争时期的主要史实与时间-备战2023年中考历史考试易错题(原卷版)
- 黄金卷6-【赢在中考·黄金八卷】(解析版)
- DB33T 2195-2019 家庭医生签约服务居家护理工作规范
- 以社區為基礎之糖尿病個案管理與疾病管理
- 2022-2023学年山东省聊城市高一上学期期末考试地理试题(解析版)
- 阜阳热熔胶项目可行性研究报告
- 医疗器械考试题及答案
- 初三家长会数学老师发言稿
- 2025版国家开放大学法学本科《知识产权法》期末纸质考试总题库
- 医药销售培训课程
- 2022-2023学年北京市海淀区七年级(上)期末语文试卷
- 膝关节炎阶梯治疗
- 设备日常维护及保养培训
- 行业背景、经济运行情况及产业未来发展趋势分析
- 配电室维护协议书
- 2024年度工作总结模板简约干练风格
- 2024年广东省第一次普通高中学业水平合格性考试历史试卷(解析版)
评论
0/150
提交评论