山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析_第1页
山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析_第2页
山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析_第3页
山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析_第4页
山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市寿光圣都中学2022-2023学年高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(+)2n(n∈N*)展开式中只有第6项系数最大,则其常数项为() A.120 B.210 C.252 D.45参考答案:B【考点】二项式系数的性质. 【专题】二项式定理. 【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项. 【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大, 所以展开式有11项,所以2n=10,即n=5, 又展开式的通项为=, 令5﹣=0解得k=6, 所以展开式的常数项为=210; 故选:B 【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项. 2.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都是11分,且乙在其中一场比赛中获得第一名,下列说法正确的是(

)A.乙有四场比赛获得第三名B.每场比赛第一名得分a为4C.甲可能有一场比赛获得第二名D.丙可能有一场比赛获得第一名参考答案:A【分析】先计算总分,推断出,再根据正整数把计算出来,最后推断出每个人的得分情况,得到答案.【详解】由题可知,且都是正整数当时,甲最多可以得到24分,不符合题意当时,,不满足推断出,最后得出结论:甲5个项目得第一,1个项目得第三乙1个项目得第一,1个项目得第二,4个项目得第三丙5个项目得第二,1个项目得第三,所以A选项是正确的.【点睛】本题考查了逻辑推理,通过大小关系首先确定的值是解题的关键,意在考查学生的逻辑推断能力.3.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e﹣x,③f(x)=lnx,④f(x)=tanx,其中有“巧值点”的函数的个数是()A.1 B.2 C.3 D.4参考答案:B【考点】63:导数的运算.【分析】根据题意,依次分析四个函数,分别求函数的导数,根据条件f(x0)=f′(x0),确实是否有解即可.【解答】解:根据题意,依次分析所给的函数:①、若f(x)=x2;则f′(x)=2x,由x2=2x,得x=0或x=2,这个方程显然有解,故①符合要求;②、若f(x)=e﹣x;则f′(x)=﹣e﹣x,即e﹣x=﹣e﹣x,此方程无解,②不符合要求;③、f(x)=lnx,则f′(x)=,若lnx=,利用数形结合可知该方程存在实数解,③符合要求;④、f(x)=tanx,则f′(x)=﹣,即sinxcosx=﹣1,变形可sin2x=﹣2,无解,④不符合要求;故选:B.4.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是A.1

B.

C. D. 参考答案:C略5.在区间[0,]上随机取一个数,则事件“”发生的概率为(

)A.

B.

C.

D.1参考答案:C略6.已知函数存在极值点,且,其中,(

)A.3 B.2 C.1 D.0参考答案:C【分析】求得函数的导数,根据函数存在极值点,可得,即,又由,化为:,把代入上述方程,即可得到答案.【详解】由题意,求得导数,因为函数存在极值点,,即,因为,其中,所以,化为:,把代入上述方程可得:,化为:,因式分解:,,.故选:C.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.7.某质量监督局要对某厂6月份生产的三种型号的轿车进行抽检,一直六月份该厂共生产甲种轿车1400辆,乙种轿车6000辆,丙种轿车2000辆.现采用分层抽样的方法抽取47辆轿车进行检测,则甲乙丙三种型号的轿车一次应抽取(A)14辆21辆

12辆

(B)7辆30辆

10辆(C)10辆20辆

17辆

(D)8辆21辆

18辆参考答案:B8.,其中(

)(A)恒取正值或恒取负值

(B)有时可以取0(C)恒取正值

(D)可以取正值和负值,但不能取0参考答案:D9.已知均为单位向量,它们的夹角为,那么(

)A.

B.

C.

D.

参考答案:A10.数列0,-1,0,1,0,-1,0,1,…的一个通项公式是(

)A.

B.cos

C.cos

D.cos参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知数列{an}的通项公式是,数列的通项公式是,令集合,,.将集合中的元素按从小到大的顺序排列构成的数列记为{cn}.则数列{cn}的前28项的和

.参考答案:82012.出租车司机从南昌二中新校区到老校区(苏圃路)途中有8个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是则这位司机在途中遇到红灯数的期望为____.(用分数表示)参考答案:【分析】遇到红灯相互独立且概率相同可知,根据二项分布数学期望求解公式求得结果.【详解】由题意可知,司机在途中遇到红灯数服从于二项分布,即期望本题正确结果:【点睛】本题考查服从于二项分布的随机变量的数学期望的求解,考查对于二项分布数学期望计算公式的掌握,属于基础题.13.一个物体的运动方程为,其中的单位是米,的单位是秒,那么物体在3秒末的瞬时速度是

米/秒.

参考答案:D略14.已知一组数据,,,,的方差为,则数据2,2,2,2,2的方差为_______.参考答案:2【分析】根据方差的性质运算即可.【详解】由题意知:

本题正确结果:2【点睛】本题考查方差的运算性质,属于基础题.15.已知直线与圆相切,则的值为________.参考答案:16.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是.参考答案:[1,+∞)【考点】6B:利用导数研究函数的单调性.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故答案为:[1,+∞).17.已知为偶函数,且,则______参考答案:16略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)如图,在直三棱柱中,,,点分别为和的中点。(Ⅰ)证明:∥平面;

(Ⅱ)求三棱锥的体积。参考答案:(Ⅰ)解法1,连接……………5分解法2,P为的中点,连接PN和PM,由中位线定理知,即(Ⅱ)法一:

平面法二:连接,为的中点,平面……………12分19.已知椭圆E:(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(-1),求此时的椭圆方程;(3)是否存在椭圆E,使得直线MN的斜率k在区间(-)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.参考答案:解:(1)圆F1的方程是(x+c)2+y2=(a-c)2,因为B2M、B2N与该圆切于M、N点,所以B2、M、F1、N四点共圆,且B2F1为直径,则过此四点的圆的方程是(x+)2+(y-)2=,从而两个圆的公共弦MN的方程为cx+by+c2=(a-c)2,又点B1在MN上,∴a2+b2-2ac=0,∵b2=a2-c2,∴2a2-2ac-c2=0,即e2+2e-2=0,∴e=-1.(负值已舍去)(2)由(1)知,MN的方程为cx+by+c2=(a-c)2,由已知-=-1.∴b=c,而原点到MN的距离为d==|2c-a|=a,∴a=4,b2=c2=8,所求椭圆方程是;(3)假设这样的椭圆存在,由(2)则有-<-<-,∴<<,∴<<,∴<<.故得2<<3,∴3<<4,求得<e<,即当离心率取值范围是(,)时,直线MN的斜率可以在区间(-,-)内取值.20.(本小题满分12分)如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;(3)求证:圆内的点都不是“C1—C2型点”.参考答案:(1)C1的左焦点为,过F的直线与C1交于,与C2交于,故C1的左焦点为“C1-C2型点”,且直线可以为;(2)直线与C2有交点,则,若方程组有解,则必须;直线与C2有交点,则,若方程组有解,则必须故直线至多与曲线C1和C2中的一条有交点,即原点不是“C1-C2型点”.(3)显然过圆内一点的直线若与曲线C1有交点,则斜率必存在;根据对称性,不妨设直线斜率存在且与曲线C2交于点,则直线与圆内部有交点,故,则①若直线与曲线C1有交点,则化简得,.....②由①②得,但此时,因为,即①式不成立;当时,①式也不成立综上,直线若与圆内有交点,则不可能同时与曲线C1和C2有交点,即圆内的点都不是“C1-C2型点”21.已知{an}为首项a1=2的等差数列,{bn}为首项b1=1的等比数列,且a2+b2=6,a3+b3=10.(1)分别求数列{an}、{bn}的通项公式;(2)记cn=an?bn,求数列{cn}的前n项和Sn.参考答案:【考点】数列的求和;数列递推式.【分析】(1)设数列{an}的公差为d(d>0),数列{bn}的公比为q,由题意列方程组求得公差和公比,代入等差数列和等比数列的通项公式得答案;(2)把数列{an}和{bn}的通项公式代入cn=anbn,然后直接利用错位相减法求数列{cn}前n项和Sn.【解答】解:(1)设公差为d,公比为q,由a2+b2=6,a3+b3=10,a1=2,b1=1,得,解得d=2,q=2,∴an=2n,bn=2n﹣1,(2)∵cn=an?bn=2n?2n﹣1=n?2n,∴Sn=1?21+2?22+…+n?2n,∴2Sn=1?22+3?23+…+(n﹣1)?2n+n?2n,∴﹣Sn=2+22+23+…+2n﹣n?2n+1=﹣n?2n+1=(1﹣n)2n+1﹣2∴Sn=(n﹣1)2n+1+2.22.(本题满分12分)已知椭圆和直线L:y=bx+2,椭圆的离心率e=,坐标原点到直线L的距离为.(1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2与椭圆相交于C、D两点,试判断是否存在实数k,使得点E在以CD为直径的圆外?若存在,求出k的取值范围;若不存在,请说明理由.参考答案:(1)直线l:y=bx+2,坐标原点到直线l的距离为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论