




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《务本求实,守正创新》喻汉林老师doc初中数学――2018年中考复习与评判略谈务本。教学:以学生为本,为进展服务。﹡﹡假设能真按中考评判所倡导的方向去复习,那么既能减轻学生负担又能提高学生素养。了解学生,以从学生实际动身为要领美国闻名教育心理学家奥苏伯尔:〝假如我不得不将所有的教育心理学原理还原为一句话的话,我将会讲,阻碍学习的最重要因素是学生差不多明白了什么,依照学生的原有知识状况进行教学〞。如何样了解?通过各种学习活动中的学生表现来了解。例1〔Ⅰ〕〔青海〕化简:.〔Ⅱ〕〔青岛〕用配方法解一元二次方程:x-2x-2=0.例2〔Ⅰ〕以下四个三角形中,与右图中的三角形相似的是〔〕〔第8题〕〔第8题〕A.B.C.D.〔Ⅱ〕如图,是的内接三角形,点是优弧上一点〔点不与重合〕,设,.〔1〕当时,求的度数;CBAO〔2〕猜想与之间的关系,并给予证明CBAO随讲:双基明白得、把握了没有?有多少学生把握了?未把握的困难所在?在这些活动中,学生有如何样的心智活动表现和情绪表现?追溯到最初未把握的地点,并从那个地点开始。当前教学最大的困难之一,是一些学生厌恶学习。遵循规律,以促进学生进展为要务〔1〕不要干扰学生的数学思维〔章建跃老师的建议与所模拟的学生的心理活动〕①思维需要合适的咨询题情形——老师,我不是三岁的小孩,也不是数学家,请在设置咨询题情形时,能够让我〝跳一跳,够得着〞;②思维从咨询题开始——老师,不要总是您提出咨询题让我们回答,请给我提咨询的机会;③独立摸索需要安静的环境——老师,提出咨询题后,您能够先看一看窗外的风景,让我先明白得一下题意,先让我自己独立摸索一下,您为了不让我们走弯路而〝喋喋不休〞的引导,实在是对我们思维的干扰;④有深度的思维需要充分的时刻——老师,提出咨询题后,请给我摸索的时刻,不要赶忙让我回答,请您耐心点,不逼我;⑤让学生完成关键的概括活动——老师,有了这些具体例子为基础,我也能概括出一样的规律,请把发觉的机会让给我;⑥数学思维是以概念的发生进展过程为线索的,要表达前后一致的思想方法——老师,假如我明白得了概念,通过解答一定量的题目,让我有反思解题过程的机会,从中总结概括差不多思想方法,那么〝什么样的题目我都能应付〞,请不要用〝题型〞限制我。〔2〕〝最近进展区〞及其对教学的意义〝最近〞――最近学生的原有基础,教学活动开展的起点。目标明确,目标准确。①在新课程推进的背景下,起点应该有新的内涵:起点不是一维的,而是三维的,即不但有〝知识与能力〞的起点,还应该有〝过程与方法〞和〝情感、态度与价值观〞的起点。②学生是有差异的,因此,应该关注大部分学生起点,同时在教学中,尽可能关注每一位学生。③假如能把学生原先的〝相异构想〞〔与正确的概念及思维方法大相径庭的方法〕显现出来,与正确的认识〝碰撞〞,再放入学生的脑中,如此的教学才是启发。才是有意义的学习。否那么,假如仅仅告诉学生什么是正确的,而〝相异构想〞尚未得到纠正。﹡﹡出错是正常现象――宽容。课堂本来确实是出错的场所。纠正错误正是走向真理的开始――从错误中学习。暴露自己的错误。让学生展现所有错误――不仅仅是展现正确好的。例3观看函数y=2x-5的图像,回答以下咨询题:〔1〕x取何值时,2x-5=0?〔2〕x取何值时,2x-5>0?〔3〕x取何值时,2x-5<0?〔4〕x取何值时,2x-5>3?练习:如图,是函数y=-2x-6的图像,看图回答以下咨询题:〔1〕当x时,-2x-6>0?〔1〕当x时,-2x-6<0?A:x>3,-2x-6>0?,……B:x<3,-2x-6>0?,……T:同意B的举手?-2x-6确实是谁?s:yT:有没有其他方法求解?反思:〔1〕A只是形式上的〝学会了〞,因此可不能变通。〔2〕举手的方法不是确定真理的标准。〔3〕有了一致的认同,并不一定明白了。〔4〕那个地点的本质与重点是有没有其他的求解方法吗?用函数观点〔本质上不是方法层面〕观看一元一次不等式、一元一次方程及二元一次方程组时,建立了一个从整体观看局部、数形结合的方法:解不等式时,只要求解相应的方程就能够了〔确定界点〕,以后只要观看图像便能解决咨询题。即用方程获得精确的解,数形结合的方法获得求解不等式的思路,同时也幸免了解不等式变号可能显现的错误,还幸免了三次重复地做一个相似的咨询题。〔4〕转化:x轴向上平移3个单位。拓展:如以下图,:y1=2x-5和y2=,请回答以下咨询题:x取何值时,y1=y2?x取何值时,y1>y2?x取何值时,y1<y2?x取何值时,y1-y2>3?S:〔学生几乎全部用的是解的方法〕T:〔2〕〔3〕还有没有其他方法?反思:〔1〕学生明显地适应于代数方法,并认为如此才能准确地确定咨询题的解?而笼统地认为图像法并并提供解决咨询题的技术。〔2〕用函数观看,那个地点解不等式咨询题意味着什么?看起来未明晰。〔3〕朝哪里拓展?数形结合的解决咨询题〔4〕是更有意义的。转化:y1>y2+3或y1-3>y2。④〝过程与方法〞的成效往往不能即刻凸现,同时往往不是显性的,而是隐性的。因此要增强打算性。⑤哪些是差不多明白了的,哪些是易明白的,哪些是困难的,哪些是易误解的,哪些是能力的生长点,在易误解的、困难的、生长点上着力是提高效率的关键。明白的不讲,易明白的少讲,难明白的、有价值的地点多花力气。⑥造成认知冲突。只有产生认知冲突时,咨询题才对思维的进展有益。⑦让学生展现自己的才华,而不是教师展现自己的才智。〔3〕让学生学会摸索、学会探究。
探究精神是课堂的灵魂,唯有探究才能培养思想者和批判者,没有探究的教学只能是训练。探究学习的意蕴:摸索、质疑、批判、观赏、创新。让探究成为课堂教学的常态。〔4〕提升学生的学习体验:激发乐趣。良好的态度与良好的师生关系:①宽容,接纳学生;②重视,尊重学生;③相信,依靠学生。建立〝自由、民主、宽松、和谐〞的课堂文化。关注学生的感受,让学生觉得:学习数学是有味或值得做的情况。例4教师对学生阻碍的两个例子:一位留美博士、20年前的学生回校探望老师时讲:〝您当年课上的‘挖小妙’(挖掘咨询题中小小的妙处,注意每个细节)20年来我一直在用着,天天用,而且越用越管用!〞另一位千万富翁的企业家在教师节给老师的贺卡中写道:〝您的‘瞄准靶心——射击’〔看咨询题要把握中心、抓住本质〕一直阻碍着我!您在课堂上教给我们的摸索咨询题的方法,让我们一辈子受用无穷。〞〔5〕突出学生的主体作用。一位特级教师给自己立下了〝三不教〞原那么,即:①凡学生自己看书能明白,不教;②凡看书不明白但自己想想能够弄明白,不教;③想想也不明白但通过学生之间讨论能明白,也不教。洋思〝之教〞三点:①教的内容应该是学生自学后还不能把握的地点,即自学中暴露出来的要紧倾向性的疑难咨询题,对学生通过自己已把握的,一律不教。②教的要求,不就题讲题,只找出答案,而要查找出规律,真正让学生知其因此然。还要引导学生预防运用时可能显现的毛病。③教的方式都让已把握的学生先讲〔即使倾向性咨询题,也可能有人会〕,如学生讲对了,教师确信,不必重复;讲得不完整、达不到深度的,教师要补充;讲错了的,教师那么要更正。如此,教师讲的时刻就少了,一样不超过5分钟,但能通过补充、更正的方式达到解决疑难咨询题的目的。评判:为学生展现学习成果提供舞台合理、科学地评判学生使不同学生得到不同的进展表现有效操纵难度,努力降低难度。努力操纵文字量,尽量减少文字量。评判方向:基础性,层次性为主体。加强以差不多功为重点的差不多素养的考查。样卷表现:以不同形式,强化对双基的考查。例5〔Ⅰ〕二次函数的最小值是.〔Ⅱ〕如图,在正方形网格中,∠AOB的正切值是。〔Ⅲ〕如图,某同学在课桌上无意中将一块三角板叠放在直尺上,他发觉∠1+∠2=度.讲明:中考试卷中,基础性的、常见试题应当占有较大的比重。同时,显现少量有点创意、难度不大的小题是必需的,它可引导教学更灵活地加强基础内容的教学,也能够对学生施以更客观的评判。选择题往往能对概念等的明白得施以有效考查,填空题往往能对简单技能的把握情形施以有效考查,因此,选择题、填空题等是考查简单双基的主体。求实教学:夯实基础,提高实效1.不实现象:〔1〕追求一步到位。〔2〕难度盲目拔高。〔3〕迷信大容量〔4〕迷信快节奏。〔5〕少数人表现,多数人当观众。〔6〕表面上喧闹。〔7〕课堂上无事可干,或干不了。〔8〕心游他方。﹡﹡教师困惑:方向是什么?方向会可不能变?讲了做了专门多,看起来没有多大用。做了明白了1000道,第1001道可能还可不能做。是深挖?广猎?依旧重在探究与能力?2.求实之道:不仅是训练。聪慧人下傻功夫。辨析:是先讲后做依旧先做后讲?是仿照依旧探究?不能简单而论,一概而论。〔1〕勾画知识树。――突出主干,理清关系,关注交汇点由谁画脑图?老师?学生?。学生交流复习脑图,抖出。〔2〕突出核心知识,淡化非本质内容﹡﹡哪些是核心的?哪些是本质的?核心即要紧部分。本质即全然属性。例6〔Ⅰ〕如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,那么四边形中,最大角的度数是.3535°yxACB2112O〔Ⅱ〕如图,点的坐标分不为〔0,1〕,〔,0〕,〔1,0yxACB2112O〔1〕写出所有符合条件的点的坐标;〔2〕选择〔1〕中的一点,求直线的解析式.随讲:枝末知识点了解即可,使用过的专门情境不再是关注的对象。核心的知识,常用的技能,思想方法应是关注的重点。〔3〕突出通性通法,淡化专门技巧例7谈数形结合思想的教学我国闻名数学家华罗庚曾讲过:〝数形结合百般好,隔裂分家万事非〞。数形结合是一种意识:能否在需要时建立这种联想。是一种思想:联系与转化的思想。是一种能力:借助数形结合解决咨询题的能力。是一种摸索的方式,一种联想的方式、转化的方式:由数想到形,由形想到数;将数的咨询题转化为形的咨询题,将形的咨询题转化为数的咨询题,然后回到原咨询题的解决。数形结合思想的形成需要的是一个有打算的、循序渐进的、螺旋上升的、多次反复的过程。数形结合的要紧方法,即数形结合的桥梁是数轴和坐标系,A(5),B(-1,6)便是两者的简洁表示。数形结合的基础:点与坐标的一一对应性。数形结合有两大领域:解析几何:用代数来研究几何图形;函数:用图像来研究性质。作用:表示。讲明。用于解决咨询题。对数形结合的明白得有三种:狭义的明白得。数的差不多元素是指数、坐标、方程、函数等。形的差不多元素是指点、直线、圆、曲线等。数形结合确实是将数与形联系起来。要紧是以坐标为桥梁,一一对应关系为基础。通过〝以形助数〞或〝以数解形〞,相互为用,解决咨询题:形直观形象,数准确入微;形定思路,数来定解。广义明白得1:狭义中的数形结合,加上专门代数式、等式、不等式等所反映的几何意义,以及专门图形所反映的代数意义等。后者可与坐标无关,但有表示、讲明的作用。广义明白得2:数指狭义中的数,加上数据。形为几何图形和统计图形。数形结合通常是以狭义的方式来明白得的。有时也在狭义1上使用数学结合。初中数学中与数形结合有关的内容有:数与代数部分:〔1〕数轴;〔2〕整式乘法运算。〔3〕公式;的几何背景。(4)能用观看、画图等手段估量方程的解。〔5〕会用数轴确定一元一次不等式组的解集。〔6〕函数的图像表示;〔7〕能结合图象对简单实际咨询题中的函数关系进行分析,能用适当的函数表示法刻画某些实际咨询题中变量之间的关系。(8)会画一次函数(正比例函数)、反比例函数、二次函数的图象,依照一次函数(正比例函数)、反比例函数、二次函数的图象和解析表达式明白得其性质,会依照公式确定二次函数图象的顶点、开口方向和对称轴。(9)能依照一次函数的图象求二元一次方程组的近似解。会利用二次函数的图象求一元二次方程的近似解。等等。﹡﹡运动与函数之间的联想:函数是刻画由运动而引起的变量之间关系的模型;运动是其引起的变量间的函数关系的载体。空间与图形部分:从广义上讲,有度量存在的几何咨询题差不多上具有数形结合特点的。线段及其长度,距离,角及其大小,周长,面积等。度量在初中有两个系统,基于长度的度量与基于角的度量。〔1〕角度的和与差运算。〔2〕三角形的内角和等。〔3〕勾股定理及其逆定理。〔4〕平行四边形→→矩形→→正方形,或平行四边形→→菱形→→正方形的度量刻画。〔5〕点与圆、直线与圆以及圆与圆的位置关系的度量刻画。〔6〕圆周角与圆心角的关系、直径所对圆周角的特点的度量刻画。〔7〕孤长及扇形的面积,圆锥的侧面积和全面积。〔8〕平移的距离,旋转的度数。〔9〕线段的比、成比例线段与黄金分割。〔10〕相似比。位似比。〔11〕锐角三角函数(sinA,cosA,tanA),30°、45°、60°角的三角函数值。〔12〕平面直角坐标系;在给定的直角坐标中,会依照坐标描出点的位置,由点的位置写出它的坐标。感受图形变换后点的坐标的变化。等等。具体方法:〔1〕用好每一道精选的试题,讲清〝要点、易错点、联系点〞。〔2〕将能力、思想的培养渗透在每节课中。〔3〕在系统思想指导下确定好每一时期、每节课的具体而又适宜的目标〔该调整时调整〕,循序渐进,落实到位。〔4〕分类:将学生分类;将存在咨询题分类;将练习分类;〔5〕集体备课。……〝量不在多,典型就行;题不在难,有思想就灵。〞〝教师跳进题海,学生跳出题海。〞例8:如下图的两条抛物线的解析式分不是,〔其中为常数,且〕.〔1〕请写出三条与上述抛物线有关的不同类型的结论;〔2〕假设抛物线相求值;yxAOBB〔3〕当时,设与轴分不交于两点〔在的左边〕,与轴分不交于两点〔在的左边〕,观看四点坐标,请写出一个你所得到的正确结论,并讲明理由;yxAOBB〔4〕设上述两条抛物线相交于两点,直线都垂直于轴,分不通过两点,在直线之间,且与两条抛物线分不交于两点,求线段的最大值.随讲:由数到形,由形到数。评判:抓住核心与主干,提高效度与信度﹡﹡考试咨询题:做不完;做不全;做不规范;做不来。﹡﹡从知识网络的交汇点上设计题目,从学科的整体意义、思想含义上考虑咨询题。﹡﹡评判要求:不恐吓学生,努力平实些。样卷表现:常规运算、推理论证能力等的考查仍是考查的重要内容。例9〔Ⅰ〕解方程组:〔Ⅱ〕如图,平行四边形ABCD中,∠B=60°,BC=2AB,延长BA至E,使EA=AB,连结EC,交AD于F.〔1〕试用实线连结图中已标明字母的两个点,画出使图中显现直角三角形的所有情形;(2)请在(1)中选择一种情形证明.〔Ⅲ〕某班组织20位同学去关心某果园的果农采摘柑橘,任务是完成720千克柑橘的采摘、运送、包装三项工作,依照实际情形将三项工作的人员分配和每人每小时完成某项工作量制作如下统计图:〔1〕按照图1的人员分配方案,各项工作完成的时刻相等,那么咨询每人每小时运送、包装各多少千克柑橘?并补全图2中的条形统计图;〔2〕假设他们一起完成采摘任务后,小明同学将20人分成两组,由一组先运送,另一组再去包装,且每人每小时完成某项工作量与〔1〕中相同.结果当包装组在运送组完成任务所花时刻内还有80千克讲明:常见、常规题的分值约占60%以上;中档题及较易题分值约占70%以上。样卷表现:对应用意识与能力的考查保持应有力度例10〔Ⅰ〕如图是三副拉力器〔拉力器除弹簧的根数有差异外其它都相同〕,拉力器弹簧部分的长度会随着拉力大小的不同发生变化.自然状态下,弹簧部分长均为28cm.经测试发觉,当作用于甲拉力器的拉力为360N时,拉力器弹簧部分长58cm.设作用于弹簧的拉力为x(N),弹簧长度为y(cm).(1)求拉力器的一根弹簧中y关于x的一次函数表达式;(2)小明尽力只能将乙拉力器弹簧部分拉至48cm长,而小亮尽力一拉,却能将丙拉力器弹簧部分拉至58cm58cm58cm28cm甲拉力器48cm48cm28cm乙拉力器28cm28cm丙拉力器58cm〔Ⅱ〕2018年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的缺失,政府部门出台了相关补贴政策:采取每千克补贴0.2元的方法补偿果农.以下图是〝绿荫〞果园受灾期间政府补助前、后脐橙销售总收入y〔万元〕与销售量x〔吨〕的关系图.请结合图象回答以下咨询题:〔1〕在出台该项优待政策前,脐橙的售价为每千克多少元?〔2〕出台该项优待政策后,〝绿荫〞果园将剩余脐橙按原售价打九折赶忙全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?〔3〕求出台该项优待政策后y与x的函数关系式.讲明:成也审题,败也审题。对应用意识与能力的考查是新课程标准关注的重要内容,也是新课程标准的一个。守正教学:激发与启发,引导与指导﹡﹡数学之妙在于理,教学之道在于度﹡﹡1.不正现象:〔1〕课堂教学→〝题型教学〞→〝刺激——反应〞训练。有的教师试图通过〝题型教学〞穷尽〝题型〞,幻想通过〝题型〞的机械重复、强化训练,让学生把握对应的〝特技〞和〝动作要领〞而提高考试分数。对具有普适意义的、迁移能力强的〝全然大法〞——数学思想方法的教学,却因其不是〝立竿见影〞,需要较长时刻的坚持才能奏效,是一种潜移默化、润物无声的〝慢工〞,被有些老师判为〝不实惠〞而得不到应有的渗透、提炼和概括。结果是在稍有变化的情境中,因为没有数学思想方法的支撑,〝特技〞失灵,〝动作〞变形,灵活应用数学知识解决咨询题的能力成为〝泡影〞。〝讲过练过的不一定会,没讲没练的一定可不能〞。〔2〕例题教学替代概念的概括过程。认为〝应用概念的过程确实是明白得概念的过程〞。殊不知没有概括过程必定导致概念明白得的先天不足,没有明白得的应用是盲目的应用。结果不仅〝事倍功半〞,而且〝功能僵化〞——面对新情境时无法〝透过现象看本质〞,难以实现概念的正确、有效应用,质量效益都无保证。〔3〕能力异化〔技能化〕咨询题。――尽量使之程序化、技能化。〝一个方法,三项本卷须知〞。〔4〕将复习课上成压缩后的新授课,或上成单纯的练习课。明白得变成了经历,探究变成了听明白。〔5〕按照现成资料,无删无增,照本宣科,看题讲题。2.方法:〔1〕〝不断回到概念去,从差不多概念动身摸索咨询题、解决咨询题〞,回到差不多思想,回到差不多方法;〔2〕加强概念的联系性,从概念的联系中查找解决咨询题的新思路。〔3〕〝题型〞、与〝题型〞对应的技巧是雕虫小技,无法穷尽,〝巧〞是教可不能的,要靠学生自己琢磨;〔4〕追求解决咨询题的〝全然大法〞——差不多概念所包蕴的思想方法,要强调思想指导下的操作。〔5〕整体把握,复习引入,摸索延伸课外,引发课后的讨论。〔6〕防止水平下降。坚持为明白得而教,为进展而教。〔7〕自然的延伸。〔8〕〝举一反三〞,〝举三反一〞。〔9〕〝操纵〞自己的讲解。3.有效教学的铁律:〔1〕先学后教——以学定教〔2〕先教后学——以教诲学〔3〕〝温故知新〞——学会了才有爱好;重新认识,有所提高。4.其他观念:多与少〔量〕。粗与细〔讲授〕。小与大〔方法〕。远与近〔目标〕。高与低〔观点〕。理与例〔内容〕。明与暗〔思想〕。善与恶〔情感〕。同意与探究〔方式〕。﹡﹡例子的选择至关重要,〝一个好例子胜过一千条讲教〞。﹡﹡〝细节决定成败〞――设咨询,选题,概念等细节。评判:考数学素养,非展现作品咨询题与困惑:〔1〕辅助线咨询题、删去内容咨询题、新增内容咨询题、运算器咨询题、带好备用纸片等咨询题等如何样处理?〔2〕有人认为:近几年中考有看重不等式,看轻方程趋势,对否?二次函数应用题近年考得专门少,是否应当加强?――重要的是建模,而点落何处,应由咨询题自然引出。〔3〕基础〔差不多核心主干〕与探究等〔基础外〕的比例如何?基础:探究等的比例约7:3。探究等也分为中等与较高两个层次。样卷表现:对探究能力的考查受到高度重视例11〔Ⅰ〕如图,在△ABC的外接圆中,BD平分∠ABC,DB⊥FB,D、F在△ABC的外接圆上,连接DF交AC于G.(1)依照图中条件,试写出三个不同类型的正确结论(不再添加辅助线和字母);(2)假设DF=9,sin∠DBC=,求AC的长.ABACADAEA〔Ⅱ〕:如图,△ABC是等腰直角三角形,D为斜边AB上的任意一点〔不与点A、B重合〕,连接CD,作EC⊥ABACADAEA〔1〕求证:∠E+∠ADC=180°;〔2〕猜想:当点D在何专门位置时,四边形AECD是何种专门四边形?讲明理由.讲明:开放与探究是进展学生创新思维能力的两大方面,这既是数学课程的潜在目标,又是数学专门教育功能的重要方面,因而中考中理应关注并加强。这一直是我们所关注的重要内容,教师们应予以高度重视。出新教学:源于反思,成于改进﹡﹡有所设想,有所尝试,有所反思,不断改进例12〔苏州〕初三数学课本上,用〝描点法〞画二次函数的图象时,列了如下表格:…012………依照表格上的信息回答以下咨询题:该二次函数在时,.图21ABCDOy/km90012x/h4例1图21ABCDOy/km90012x/h4依照图象进行以下探究:信息读取〔1〕甲、乙两地之间的距离为km;〔2〕请讲明图中点的实际意义;图象明白得〔3〕求慢车和快车的速度;〔4〕求线段所表示的与之间的函数关系式,并写出自变量的取值范畴;咨询题解决〔5〕假设第二列快车也从甲地动身驶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶购销合作合同模板
- 家族遗产合同样本
- 天津市实习学生劳动合同细则
- 电梯加装项目合同模板
- 施工队劳动合同简明合同模板
- 农村地区私人租地合同样本协议
- 新版团体人身意外伤害保险合同条款解析
- 房地产公司合同审核与管理制度
- 信息系统的测试与质量保证考核试卷
- 孤残儿童心理关爱与支持体系构建方法研究考核试卷
- 《行政伦理学教程(第四版)》课件 第1、2章 行政伦理的基本观念、行政伦理学的思想资源
- 拆除工程施工拆除进度安排
- 绝缘技术监督上岗员:厂用电设备技术监督考试资料一
- 卫生监督村医培训课件
- 动物的感觉器官
- 猎头项目方案
- 2024年家庭教育指导师考试(重点)题库及答案(含各题型)
- 直肠癌术后的康复护理
- 性商老师课程培训课件
- 拆除锅炉可行性报告
- 全套ISO45001职业健康安全管理体系文件(手册及程序文件)
评论
0/150
提交评论