2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(原卷版)_第1页
2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(原卷版)_第2页
2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(原卷版)_第3页
2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(原卷版)_第4页
2024年中考数学常见几何模型全归纳(全国通用)专题37 图形变换模型之翻折(折叠)模型(原卷版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题37图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。涉及翻折问题,以矩形对称最常见,变化形式多样。无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。模型1.矩形中的翻折模型【模型解读】例1.(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形的边,分别在轴、轴正半轴上,点在边上,将矩形沿折叠,点恰好落在边上的点处.若,,则点的坐标是.

例2.(2023春·江苏泰州·八年级统考期中)如图,在矩形中,,,E是的中点,将沿直线翻折,点落B在点F处,连结,则的长为(

A.6 B. C. D.例3.(2023·湖北·统考中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.(1)求证:;(2)若,求的长.

例4.(2023春·江苏宿迁·八年级统考期末)如图,在矩形中,,.点O为矩形的对称中心,点E为边上的动点,连接并延长交于点F.将四边形沿着翻折,得到四边形,边交边于点G,连接,则的面积的最小值为(

A.18-3 B. C. D.例5.(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片中,,,点E、G分别在上,将、分别沿翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E四点在同一直线上时,线段长为(

)A. B. C. D.例6.(2023·江苏盐城·统考中考真题)综合与实践【问题情境】如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.【活动猜想】(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当,,时,求证:点,,在同一条直线上.【深入探究】(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.模型2.正方形中的翻折模型【模型解读】例1.(2023·河南洛阳·统考二模)如图,正方形的边长为4,点F为边的中点,点P是边上不与端点重合的一动点,连接.将沿翻折,点A的对应点为点E,则线段长的最小值为(

)A. B. C. D.例2.(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1 B.3 C.6 D.例3.(2023·广东九年级课时练习)如图,正方形中,,点E在边上,且.将沿对折至,延长交边于点G,连接,则下列结论:①;②③;④AG//CF;其中正确的有(填序号).例4.(2023·江苏扬州·统考中考真题)如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为.

例5.(2023·江苏·统考中考真题)综合与实践定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.(1)概念理解:当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.(2)操作验证:用正方形纸片进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.试说明:矩形是1阶奇妙矩形.

(3)方法迁移:用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.模型3.菱形中的翻折模型【模型解读】例1.(2023·四川成都·模拟预测)如图,在菱形中,,将菱形折叠,使点恰好落在对角线上的点处不与、重合,折痕为,若,,则的长为.例2.(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A’MN,连结A’C,则A’C长度的最小值是(

).A. B. C. D.2例3.(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片中,,,将菱形纸片翻折,使点A落在的中点处,折痕为,点,分别在边,上,则的长为(

)A. B. C. D.例4.(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片中,,E是边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线上的点G处,折痕为,与交于点H,有如下结论:①;②;③;④,上述结论中,所有正确结论的序号是(

)A.①②④ B.①②③ C.①③④ D.①②③④例5.(2023·浙江·九年级期末)对角线长分别为6和8的菱形如图所示,点O为对角线的交点,过点O折叠菱形,使B,两点重合,是折痕.若,则的长为.例6.(2023秋·重庆·九年级专题练习)如图,在菱形中,,,点是的中点,点是上一点,以为对称轴将折叠得到,以为对称轴将折叠得到,使得点落到上,连接.下列结论错误的是(

A. B. C. D.模型4.三角形中的翻折模型【模型解读】例1.(2023·内江九年级期中)如图,在RtABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD为折痕将ADB折叠得到,与边BC交于点E.若为直角三角形,则BD的长是_____.例2.(2023年四川省成都市数学中考真题)如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则.

例3.(2023·湖北襄阳·统考中考真题)如图,在中,,点是的中点,将沿折叠得到,连接.若于点,,则的长为.

例4.(2023·湖北武汉·统考中考真题)如图,平分等边的面积,折叠得到分别与相交于两点.若,用含的式子表示的长是.

模型5.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°例1.(2022秋·浙江宁波·九年级校考期末)如图,是的外接圆,,把弧沿弦向下折叠交于点D,若点D为中点,则长为(

)A.1 B.2 C. D.例2.(2023·广东广州·统考一模)如图,为的直径,点为圆上一点,,将劣弧沿弦所在的直线翻折,交于点,则的度数等于(

).A. B. C. D.例3.(2023·浙江宁波·校考一模)如图,的半径为4.将的一部分沿着弦AB翻折,劣弧恰好经过圆心O.则这条劣弧的弧长为.例4.(2022春·湖北荆州·九年级专题练习)如图,为的直径,将沿翻折,翻折后的弧交于D.若,,则图中阴影部分的面积为(

)A. B. C.8 D.10例5.(2023·河南商丘·统考二模)如图,在扇形中,,点C,D分别是和上的点,且,将扇形沿翻折,翻折后的恰好经过点O.若,则图中阴影部分的面积是.

例6.(2023·吉林长春·统考模拟预测)如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1 B.2 C.3 D.4例7.(2021·湖北武汉·统考中考真题)如图,是的直径,是的弦,先将沿翻折交于点.再将沿翻折交于点.若,设,则所在的范围是()A.B.C.D.例8.(2022·江苏扬州·统考一模)如图,将⊙O沿弦AB折叠,使折叠后的弧恰好经过圆心O,点P是优弧上的一个动点(与A、B两点不重合),若⊙O的半径是2cm,则△APB面积的最大值是cm2课后专项训练1.(2023·浙江·一模)如图,在矩形中,,点E为的中点,点F在上,连接,将沿翻折,使点B的对应点恰为点E,则的长为(

A. B. C. D.2.(2023年湖北省黄石市中考数学真题)如图,有一张矩形纸片.先对折矩形,使与重合,得到折痕,把纸片展平.再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕﹐同时得到线段,.观察所得的线段,若,则(

A. B. C. D.3.(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是(

A. B. C. D.4.(2023·福建莆田·九年级校考期末)如图,在中,点在优弧上,将弧沿折叠后刚好经过的中点.若的半径为5,,则的长是(

)A. B. C. D.5.(2022·浙江宁波·统考一模)如图,是半径为4的的弦,且,将沿着弦折叠,点C是折叠后的上一动点,连接并延长交于点D,点E是的中点,连接.则的最小值为.6.(2023·辽宁盘锦·统考中考真题)如图,四边形是矩形,,.点E为边的中点,点F为边上一点,将四边形沿折叠,点A的对应点为点,点B的对应点为点,过点作于点H,若,则的长是.

7.(2023·山东济南·统考中考真题)如图,将菱形纸片沿过点的直线折叠,使点落在射线上的点处,折痕交于点.若,,则的长等于.

8.(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,,将斜边翻折,使点B落在直角边的延长线上的点E处,折痕为,则的长是___________.9.(2023秋·四川雅安·八年级统考期末)在中,,点D在边上,连接,将沿直线翻折,点A恰好落在边上的点E处,若,,则的长是.

10.(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点落在长边上的点处,并得到折痕,小宇测得长边,则四边形的周长为.

11.(2023·新疆·统考中考真题)如图,在中,,,,点是上一动点,将沿折叠得到,当点恰好落在上时,的长为.

12.(2023春·浙江宁波·八年级统考期末)如图,在矩形中,,,现将矩形沿折叠,点C翻折后交于点G,点D的对应点为点H,当时,线段的长为.

13.(2023春·安徽安庆·九年级校联考阶段练习)如图,长方形沿着对角线翻折,点C落在点处,与相交于点E,若,,则的长为.14.(2023春·湖北武汉·八年级校考阶段练习)如图(1),在等腰直角三角形纸片中,,,点D,E分别为上的动点,将纸片沿翻折,点B的对应点恰好落在边上,如图(2),再将纸片沿翻折,点C的对应点为,如图(3).当,的重合部分(即阴影部分)为直角三角形时,的长为______.15.(2022·浙江嘉兴·统考中考真题)如图,在扇形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F.已知,,则的度数为;折痕的长为.16.(2023·黑龙江绥化·统考中考真题)如图,的半径为,为的弦,点为上的一点,将沿弦翻折,使点与圆心重合,则阴影部分的面积为.(结果保留与根号)

17.(2023·湖北·统考中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.(1)求证:;(2)若,求的长.

18.(2023·宁夏·统考中考真题)综合与实践问题背景:数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现:如图1,在中,,.(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则_______,设,,那么______(用含的式子表示);(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论