2024年中考数学常见几何模型全归纳(全国通用)专题27 最值模型之胡不归模型(解析版)_第1页
2024年中考数学常见几何模型全归纳(全国通用)专题27 最值模型之胡不归模型(解析版)_第2页
2024年中考数学常见几何模型全归纳(全国通用)专题27 最值模型之胡不归模型(解析版)_第3页
2024年中考数学常见几何模型全归纳(全国通用)专题27 最值模型之胡不归模型(解析版)_第4页
2024年中考数学常见几何模型全归纳(全国通用)专题27 最值模型之胡不归模型(解析版)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

资料整理资料整理资料整理专题27最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.知识储备:在直角三角形中锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即。【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.(注意与阿氏圆模型的区分)1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。【最值原理】两点之间线段最短及垂线段最短。例1.(2023·辽宁锦州·统考中考真题)如图,在中,,,,按下列步骤作图:①在和上分别截取、,使.②分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M.③作射线交于点F.若点P是线段上的一个动点,连接,则的最小值是.【答案】【分析】过点P作于点Q,过点C作于点H,先利用角平分线和三角形的内角和定理求出,然后利用含的直角三角的性质得出,则,当C、P、Q三点共线,且与垂直时,最小,最小值为,利用含的直角三角的性质和勾股定理求出,,最后利用等面积法求解即可.【详解】解:过点P作于点Q,过点C作于点H,由题意知:平分,∵,,∴,∴,∴,∴,∴当C、P、Q三点共线,且与垂直时,最小,最小值为,∵,,,∴,∴,∵,∴,即最小值为.故答案为:.【点睛】本题考查了尺规作图-作角平分线,含的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.例2.(2023·河北保定·统考一模)如图,在矩形中,对角线交于点O,,点M在线段上,且.点P为线段上的一个动点.

(1)°;(2)的最小值为.【答案】2【分析】(1)由矩形的性质得到,又由得到是等边三角形,则,即可得到答案;(2)过点P作于点E,过点M作于点F,证明,进一求解即可得到答案.【详解】解:(1)∵四边形是矩形,∴,∵,∴,∴是等边三角形,∴,∴,故答案为:.(2)过点P作于点E,过点M作于点F,

在中,由(1)知:,∴,∴,在矩形中,,∵,∴,在中,,∴,∴的最小值为2,故答案为:2.【点睛】此题考查了矩形的性质、含的直角三角形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质、含的直角三角形的性质是解题的关键.例3.(2023·陕西西安·校考二模)如图,在菱形中,,,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值为.【答案】【分析】过作,由菱形,,得到为平分线,求出,在中,利用角所对的直角边等于斜边的一半,得到,故,求出的最小值即为所求最小值,当、、三点共线时最小,求出即可.【详解】解:过作,菱形,,,,即为等边三角形,,在中,,,当、、三点共线时,取得最小值,,,,在中,,则的最小值为.故答案为:.【点睛】本题考查了等边三角形的判定与性质,以及菱形的性质,解直角三角形,熟练掌握各自的性质是解本题的关键.例4.(2023·广东佛山·校考一模)在边长为1的正方形中,是边的中点,是对角线上的动点,则的最小值为___________.【答案】0【分析】作于,可得出,从而得的最小值,将变形为,进一步得出结果.【详解】解:如图,作于,∵四边形是正方形,,,的最小值为0,∵,∴的最小值为0,故答案为:0.【点睛】本题考查了正方形的性质,解直角三角形等知识,解题关键是作辅助线转化线段.例5.(2023·湖南湘西·统考中考真题)如图,是等边三角形的外接圆,其半径为4.过点B作于点E,点P为线段上一动点(点P不与B,E重合),则的最小值为.

【答案】6【分析】过点P作,连接并延长交于点F,连接,根据等边三角形的性质和圆内接三角形的性质得到,,然后利用含角直角三角形的性质得到,进而求出,然后利用代入求解即可.【详解】如图所示,过点P作,连接并延长交于点F,连接

∵是等边三角形,∴∵是等边三角形的外接圆,其半径为4∴,,∴∴∵∴∴∵,∴∴∴的最小值为的长度∵是等边三角形,,∴∴的最小值为6.故答案为:6.【点睛】此题考查了圆内接三角形的性质,等边三角形的性质,含角直角三角形的性质等知识,解题的关键是熟练掌握以上知识点.例6.(2023·广东深圳·校考模拟预测)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、C两点,与y轴交于点B,若P是x轴上一动点,点在y轴上,连接,则的最小值是.

【答案】【分析】过作,过作.再由得,根据垂线段最短可知,的最小值为,求出即可.【详解】解:连接,过作,过作,

令,即,解得或1,,,,,,.,根据垂线段最短可知,的最小值为,,,,的最小值为.故答案为:.【点睛】本题考查胡不归问题,二次函数的性质,等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是将求的最小值转化为求的最小值.属于中考选择题中的压轴题.例7.(2023·江苏宿迁·统考二模)已知中,,则的最大值为.

【答案】【分析】过点C作,垂足为D,取,即可说明是等腰直角三角形,求出,进一步求出,继而将转化为,推出点D在以为直径的圆上,从而可知当为等腰直角三角形时,最大,再求解即可.【详解】解:如图,过点C作,垂足为D,取,∴是等腰直角三角形,∴,∵,∴,∴,∴,∴,∴,∴,∵,而一定,∴当的面积最大时,最大,∵,∴点D在以为直径的圆上,∴当D平分时,点D到的距离最大,即高最大,则面积最大,此时,则为等腰直角三角形,∴,故答案为:.

.【点睛】本题考查了等腰直角三角形的判定和性质,勾股定理,含30度的直角三角形的性质,圆周角定理,解题的关键是添加辅助线,将最值转化为的长.例8.(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是.

【答案】【分析】作出点,作于点D,交x轴于点F,此时的最小值为的长,利用解直角三角形求得,利用待定系数法求得直线的解析式,联立即可求得点D的坐标,过点D作轴于点G,此时的最小值是的长,据此求解即可.【详解】解:∵直线与x轴,y轴分别交于A,B两点,∴,,作点B关于x轴的对称点,把点向右平移3个单位得到,作于点D,交x轴于点F,过点作交x轴于点E,则四边形是平行四边形,此时,,∴有最小值,作轴于点P,

则,,∵,∴,∴,∴,即,∴,则,设直线的解析式为,则,解得,∴直线的解析式为,联立,,解得,即;过点D作轴于点G,直线与x轴的交点为,则,∴,∴,∴,即的最小值是,故答案为:.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.例9.(2023.重庆九年级一诊)如图①,抛物线y=﹣x2+x+4与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求直线BD的解析式;(2)如图②,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣GE的值最小,求出点G的坐标及PG﹣GE的最小值;【答案】(1)y=x+1;(2)点G(,),最小值为;【分析】(1)令-x2+x+4=0,可求出点A和点B的坐标,令x=0,可求出点C的坐标,再根据点D时AC的中点,可求出点D的坐标,利用待定系数法求直线解析式即可.(2)求三角形的面积最值可以转化为求线段长度的最大值,利用点坐标表示线段长度,配方求最值,求PG-GE的最小值,可将不共线的线段转换为共线的线段长度.【详解】解:(1)令﹣x2+x+4=0,解得x1=﹣2,x2=4,∴B(﹣2,0),A(4,0),令x=0,y=4,∴C(0,4),∵D为AC的中点,∴D(2,2),设直线BD的解析式为y=kx+b(k≠0),代入点B和点D,,解得,∴直线BD的解析式为y=x+1.(2)如图所示,过点P作y轴的平行线,交BE交于点H,设点P的坐标为(t,﹣t2+t+4),则点H为(t,t+1),∴PH=﹣t2+t+4﹣(t+1)=﹣(t﹣)2+,当t=时,PH最大,此时点P为(,),当PH最大时,△PDF的面积也最大.∵直线BD的解析式为y=x+1,令x=0,y=1,∴点F(0,1),在Rt△BFO中,根据勾股定理,BF=,∴sin∠FBO=过点E作x轴的平行线与过点G作y轴的平行线交于点M,∴∠MEG=∠FBO,∴MG=EG•sin∠MEG=EG,∴PG﹣GE=PG﹣MG,当P、M、G三点共线时,PG﹣MG=PM,否则都大于PM,∴当P、M、G三点共线时,PG﹣MG最小,此时点G与点H重合,令﹣x2+x+4=x+1,解得x1=3,x2=﹣2,∴点E(3,),∴PM=﹣=,∴点G(,),∴点G(,),PG﹣GE的最小值为.【点睛】本题考查二次函数求最值问题,线段的和差求最值问题,找等腰三角形的分类讨论,综合性较强.课后专项训练1.(2023·重庆·九年级期中)如图所示,菱形的边长为5,对角线的长为,为上一动点,则的最小值为A.4 B.5 C. D.解:如图,过点作于点,过点作于点,连接交于点.四边形是菱形,,,,,,,,,,,,,的最小值为4,故选:.2.(2023·山东淄博·二模)如图,在平面直角坐标系中,点A的坐标是,点C的坐标是,点是x轴上的动点,点B在x轴上移动时,始终保持是等边三角形(点P不在第二象限),连接,求得的最小值为(

)A. B.4 C. D.2【答案】C【分析】如图1所示,以OA为边,向右作等边△AOD,连接PD,过点D作DE⊥OA于E,先求出点D的坐标,然后证明△BAO≌△PAD得到∠PDA=∠BOA=90°,则点P在经过点D且与AD垂直的直线上运动,当点P运动到y轴时,如图2所示,证明此时点P的坐标为(0,-2)从而求出直线PD的解析式;如图3所示,作点A关于直线PD的对称点G,连接PG,过点P作PF⊥y轴于F,设直线PD与x轴的交点为H,先求出点H的坐标,然后证明∠HCO=30°,从而得到,则当G、P、F三点共线时,有最小值,即有最小值,再根据轴对称的性质求出点G在x轴上,则OG即为所求.【详解】解:如图1所示,以OA为边,向右作等边△AOD,连接PD,过点D作DE⊥OA于E,∵点A的坐标为(0,2),∴OA=OD=2,∴OE=AE=1,∴,∴点D的坐标为;∵△ABP是等边三角形,△AOD是等边三角形,∴AB=AP,∠BAP=60°,AO=AD,∠OAD=60°,∴∠BAP+∠PAO=∠DAO+∠PAO,即∠BAO=∠PAD,∴△BAO≌△PAD(SAS),∴∠PDA=∠BOA=90°,∴点P在经过点D且与AD垂直的直线上运动,当点P运动到y轴时,如图2所示,此时点P与点C重合,∵△ABP是等边三角形,BO⊥AP,∴AO=PO=2,∴此时点P的坐标为(0,-2),设直线PD的解析式为,∴,∴,∴直线PD的解析式为;如图3所示,作点A关于直线PD的对称点G,连接PG,过点P作PF⊥y轴于F,连接CG,设直线PD与x轴的交点为H,∴点H的坐标为,∴,∴∠OCH=30°,∴,由轴对称的性质可知AP=GP,∴,∴当G、P、F三点共线时,有最小值,即有最小值,∵A、G两点关于直线PD对称,且∠ADC=90°,∴AD=GD,即点D为AG的中点,∵点A的坐标为(0,2),点D的坐标为,∴AG=2AD=2OA=4,∵AC=4,∠CAG=60°,∴△ACG是等边三角形,∵OC=OA,∴OG⊥AC,即点G在x轴上,∴由勾股定理得,∴当点P运动到H点时,有最小值,即有最小值,最小值即为OG的长,∴的最小值为,故选:C.【点睛】本题主要考查了等边三角形的判定与性质,全等三角形的性质与判定,一次函数与几何综合,轴对称最短路径问题,解直角三角形等等,正确作出辅助线确定点P的运动轨迹是解题的关键.3.(2023.重庆九年级期中)如图,在中,,,,若是边上一动点,则的最小值为A. B.6 C. D.3解:过点作射线,使,再过动点作,垂足为点,连接,如图所示:在中,,,,当,,在同一直线上,即时,的值最小,最小值等于垂线段的长,此时,,是等边三角形,,在中,,,,,,,,的最小值为3,故选:.4.(2022·河北·九年级期中)如图,在△ABC中,∠A=15°,AB=2,P为AC边上的一个动点(不与A、C重合),连接BP,则AP+PB的最小值是()A. B. C. D.2【解答】解:如图,在△ABC内作∠MBA=30°过点A作AE⊥BM于点E,BM交AC于点P,∵∠BAC=15°,∴∠APE=45°∴EP=AP当BP⊥AE时,则AP+PB=PE+PB的值最小,最小值是BE的长,在Rt△ABE中,∠ABE=30°,AB=2∴BE=AB•cos30°=.∴AP+PB的最小值是.故选:B.5.(2023·安徽合肥·校联考一模)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A. B. C. D.【答案】C【分析】由FB联想到给FB构造含30°角的直角三角形,故把Rt△ABC补成等边△ABP,过F作BP的垂线FH,故GF+FB=GF+FH,易得当G、F、H成一直线时,GF+FB最短.又由于点G为动点,易证点G在以AC为直径的圆上,求点G到PB的最短距离即当点G在点O到BP的垂线段上时,GQ的长度.【详解】延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4∴AC=CP=2,BP=AB=4∴△ABP是等边三角形∴∠FBH=30°∴Rt△FHB中,FH=FB∴当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值∵AE⊥CD于点G∴∠AGC=90°∵O为AC中点∴OA=OC=OG=AC∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动∴当点G运动到OQ上时,GH取得最小值∵Rt△OPQ中,∠P=60°,OP=3,sin∠P=

∴OQ=∴GH最小值为故选C.【点睛】本题考查了含30°直角三角形性质,垂直平分线性质,点到直线距离,圆上点与直线距离,最短路径.解题关键是找到点G运动到什么位置时,GH最小,进而联想到找出点G运动路径再计算.6.(2023上·广东深圳·九年级校考期中)如图,在中,,,.,分别是边,上的动点,且,则的最小值为.【答案】【分析】作,连接,过B点作的延长线与G点.根据相似三角形的性质可得,因此,根据两点之间线段最短可知当B、E、F三点共线时,,此时的值最小,为BF.再证四边形是矩形,由矩形的性质可知,,在中根据勾股定理可求出的长,即可知的最小值.【详解】如图,作,连接,过B点作的延长线与G点,,且,,,.,∴当B、E、F三点共线时,,此时的值最小,为.,.又,,∴四边形是矩形,,,,.故答案为:【点睛】本题主要考查了相似三角形的性质,矩形的判定和性质,勾股定理,熟练掌握以上知识,构造相似三角形是解题的关键.7.(2023上·四川成都·八年级校考期中)已知在等腰中,,.,连接,在的右侧做等腰,其中,,连接E,则的最小值为(用含的代数式表示).

【答案】【分析】过点作交延长线于,过点作于,作的垂直平分线交于,连接,利用证明,可得,进而可得,则由含度角的直角三角形的性质得到,,故当、、三点共线时,为最小值,当、、三点共线时,,即,可得,再运用解直角三角形即可求得答案.【详解】解:如图,过点作交延长线于,过点作于,作的垂直平分线交于,连接,,,,,,,,,,,,在中,,,,,,当、、三点共线时,为最小值,当、、三点共线时,,,,与重合,,,,,,是等腰三角形,,的垂直平分线交于,,,,在中,,即的最小值故答案为:.【点睛】本题字要考查了全等三角形的性质,等腰三角形的性质,含30度角的直角三角用的推质,勾服定理,三角形内角和定理,正确作出辅助线构造直角三角形是解题关键.8.(2023·黑龙江绥化·九年级校联考阶段练习)如图,在矩形中,,对角线、相交于点O,.点E是的中点,若点F是对角线上一点,则的最小值是.【答案】【分析】过点F作于点G,证明为等边三角形,推出,则,,进而得出,当点E、F、G在同一条直线上时,取最小值,证明,根据相似三角形对应边成比例,即可求解.【详解】解:过点F作于点G,如图,∵四边形为矩形,∴,,∵,∴为等边三角形,∴,,∴,.∵,∴,,∴,当点E、F、G在同一条直线上时,取最小值,∵点E是的中点,∴,则,∵,∴,∴,∴,解得:,综上:的最小值为,故答案为:.【点睛】本题主要考查了矩形的性质,等边三角形的判定和性质,解直角三角形,相似三角形的判定和性质,解题的关键是正确作出辅助线,找出.9.(2023上·四川成都·九年级校考期中)如图,在矩形中,,,点E,F分别在边上,且,沿直线翻折,点A的对应点恰好落在对角线上,点B的对应点为,点M为线段上一动点,则的最小值为.【答案】/【分析】作于H,作于L,首先利用勾股定理得的长,再根据,求出的长,再利用,得,则当E、M、L三点共线时,最小,最小值为的长,进而解决问题.【详解】解:如图,作于H,作于L,在矩形中,,,,,,∵沿直线翻折,点A的对应点恰好落在对角线上,∴,,∴,又∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∴当E、M、L三点共线时,最小,最小值为的长,∴,∴的最小值为,故答案为:.【点睛】本题主要考查了矩形的性质,翻折的性质,相似三角形的判定与性质,勾股定理的运用,垂线段最短等知识,熟练掌握最短路径的计算方法是解题的关键.10.(2023·新疆·九年级期中)如图,在△ACE中,CA=CE,∠CAE=30°,半径为5的⊙O经过点C,CE是圆O的切线,且圆的直径AB在线段AE上,设点D是线段AC上任意一点(不含端点),则ODCD的最小值为_____.【答案】【分析】作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,易证四边形AOCF是菱形,根据对称性可得DF=DO.过点D作DH⊥OC于H,易得DH=DC,从而有CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,后在Rt△OHF中运用三角函数即可解决问题.【详解】解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图所示,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠COB=60°,则∠AOF=∠COF=∠AOC=(180°-60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,则DH=DC,∴CD+OD=DH+FD.根据两点之间线段最短可得,当F、D、H三点共线时,DH+FD(即CD+OD)最小,∵OF=OA=5,∴,∴即CD+OD的最小值为.故答案为:.【点睛】本题主要考查了圆半径相等的性质,等边三角形的判定与性质、菱形的判定与性质、两点之间线段最短、等腰三角形的性质、含30度角的直角三角形的性质,勾股定理等知识,把CD+OD转化为DH+FD是解题的关键.11.(2023·山东·九年级专题练习)如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P在x轴上运动,则PC+PB的最小值为___.【答案】4【详解】思路引领:过P作PD⊥AB于D,依据△AOB是等腰直角三角形,可得∠BAO=∠ABO=45°=∠BPD,进而得到△BDP是等腰直角三角形,故PDPB,当C,P,D在同一直线上时,CD⊥AB,PC+PD的最小值等于垂线段CD的长,求得CD的长,即可得出结论.答案详解:如图所示,过P作PD⊥AB于D,∵直线y=x﹣3分别交x轴、y轴于B、A两点,令x=0,则y=﹣3;令y=0,则x=3,∴A(0,﹣3),B(3,0),∴AO=BO=3,又∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAO=∠ABO=45°=∠BPD,∴△BDP是等腰直角三角形,∴PDPB,∴PC+PB(PCPB)(PC+PD),当C,P,D在同一直线上,即CD⊥AB时,PC+PD的值最小,最小值等于垂线段CD的长,此时,△ACD是等腰直角三角形,又∵点C(0,1)在y轴上,∴AC=1+3=4,∴CDAC=2,即PC+PD的最小值为,∴PC+PB的最小值为4,故答案为:4.12.(2023·陕西宝鸡·统考二模)如图,在矩形中,,,点是对角线上的动点,连接,则的最小值为______.【答案】【分析】直接利用已知得出,再将原式变形,进而得出最小值,进而得出答案.【详解】过点A作,过点D作于点H,交于点,∵在矩形中,,∴,∴,则,∵,此时最小,∴的最小值是.故答案为:.【点睛】此题主要考查了胡不归问题,正确作出辅助线是解题关键.13.(2023·湖南湘西·八年级统考阶段练习)如图,已知菱形ABCD的边长为4,点是对角线AC上的一动点,且∠ABC=120°,则()的最小值是____________.【答案】【分析】作DE⊥AB于E点,连接BD,根据垂线段最短,此时DE最短,即PA+PB+PD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而得出结论.【详解】解:如图,作DE⊥AB于E点,连接BD∵菱形ABCD中,∠ABC=120°∴∠DAB=60°,则△ABD为等边三角形∴∠PAE=30°∴AP=2PE∵PD=PB∴PA+PB+PD=2PE+2PD=2DE根据垂线段最短,此时DE最短,即PA+PB+PD最小∵菱形的边长为4∴AB=4,AE=2∴DE=∴2DE=∴PA+PB+PD最小值为故答案为:【点睛】本题考查菱形的性质,等边三角形的判定与性质,掌握菱形的性质,将多条线段转化是解题关键.14.(2023·四川宜宾·校考模拟预测)如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.【答案】【分析】过点P作PQ⊥AD于点Q,由于∠PDQ=60°,因此,由此可知当B、P、Q三点共线时有最小值,然后利用解直角三角形的知识进行求解即可.【详解】过点P作PQ⊥AD,垂足为Q,∵四边形ABCD是平行四边形,∴DC//AB,∴∠QDP=∠DAB=60°,∴PQ=PD•sin∠QDP=PD,∴=BP+PQ,∴当点B、P、Q三点共线时有最小值,∴的最小值为,故答案为:3.【点睛】本题考查了平行四边形的性质,解直角三角形,线段之和最短问题,正确添加辅助线,灵活运用相关知识是解题的关键.15.(2023·成都市·九年级课时练习)点E为正方形ABCD的AB边上的一个动点,AB=3,如图1,将正方形ABCD对折,使点A与点B重合,点C与点D重合,折痕为MN.思考探索(1)如图2,将正方形ABCD展平后沿过点C的直线CE折叠,使点B的对应点B′落在MN上,折痕为EC.①点B'在以点E为圆心,的长为半径的圆上;②B'M=______;拓展延伸(2)当AB=3AE时,正方形ABCD沿过点E的直线l(不过点B)折叠后,点B的对应点B'落在正方形ABCD内部或边上,连接AB'.①△ABB'面积的最大值为______;②点P为AE的中点,点Q在AB'上,连接PQ,若∠AQP=∠AB'E、求B'C+2PQ的最小值.【答案】(1)①BE;②(2)①3;②B'C+2PQ的最小值为.【分析】(1)①由折叠的性质知,点B'在以点E为圆心,BE的长为半径的圆上,②由折叠的性质得出BE=BE′,BC=B′C,MA=MB=NC=ND=AB=,∠B=∠EB′C,进而求解;(2)①△ABB'面积的最大时,只要AB边上的高最大即可,故当B′E⊥AB时,△ABB'面积的最大,进而求解;②证明PQ是△AEB′的中位线,故E、B′、C三点共线时,B'C+2PQ取得最小值为CE,即可求解.(1)解:由折叠的性质知,BE=B′E,BC=B′C,MA=MB=NC=ND=AB=,∠B=∠EB′C,①由题意得,点B'在以点E为圆心,BE的长为半径的圆上;②MB′=MN-NB′=MN-;故答案为:①BE;②;(2)解:①∵AB=3AE=3,∴AE=1,BE=2,∵点B'在以点E为圆心,BE的长为半径的圆上,如图1,∴△ABB'面积的最大时,只要AB边上的高最大即可,∴当B′E⊥AB时,△ABB'面积的最大,∴△ABB'面积=×AB×B′E=×3×2=3,故答案为:3;②∵∠AQP=∠AB'E,∴PQ∥B′E,∵P是AE的中点,∴PQ是△AEB′的中位线,如图2,∴PQ=B′E,即B'C+2PQ=B′C+B′E,∴E、B′、C三点共线时,B'C+2PQ取得最小值为CE,则CE=,即B'C+2PQ的最小值为.【点睛】本题是几何变换综合题,考查了正方形的性质,折叠的性质,等边三角形的性质,三角形的中位线定理,勾股定理,熟练掌握折叠的性质是解题的关键.16.(2023上·重庆沙坪坝·九年级校考阶段练习)如图1,在平面直角坐标系中,直线经过点,与x轴交于点,点C为中点,反比例函数刚好经过点C.将直线绕点A沿顺时针方向旋转得直线,直线与x轴交于点D.

(1)求反比例函数解析式;(2)如图2,点Q为射线以上一动点,当取最小值时,求的面积;(3)将沿射线方向进行平移,得到且刚好落在y轴上,已知点M为反比例函数上一点,点N为y轴上一点,若以M,N,B,为顶点的四边形为平行四边形,直接写出所有满足条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.【答案】(1)反比例函数解析式为(2)的面积为(3)N点坐标为,或,过程见解析【分析】(1)过点A作于点E,过点C作于点F,根据平行线分线段定理可得,从而求得,再利用待定系数法求反比例函数解析式即可;(2)由锐角三角函数求得,再由三角形内角和求得,从而求得,根据等腰三角形的性质可得,从而求得,作直线,可得,过点Q作于点H,则,可得当D,Q,H三点共线时,取最小值,此时Q与A重合,再利用求解即可;(3)由平移的性质可知,设,,分类讨论:当为对角线、为对角线或为对角线时,利用中点坐标公式求解即可.【详解】(1)解:过点A作于点E,过点C作于点F,∵,∴,点C为中点,∵,,∴,,∴,∴,∴反比例函数解析式为;

(2)解:∵,,∴,∵将直线顺时针旋转得到直线,∴,∴,∴,∴,∴,作直线,∴,过点Q作于点H,∴,∴当D,Q,H三点共线时,取最小值,此时Q与A重合,∴,∴的面积为;(3)解:N点坐标为,或,理由如下:由题可知,,设,,当为对角线时,,解得:,∴,当为对角线时,如图,∵,解得,∴,

当为对角线时,如图,,解得,∴,综上,N点坐标为,或.【点睛】本题考查平行线分线段定理、用待定系数法求反比例函数解析式、等腰三角形的判定与性质、平行四边形的性质、旋转的性质及平移的性质、中点坐标公式,熟练掌握相关的性质是解题的关键.17.(2023·江苏·中考模拟)如图,抛物线与直线交于,两点,交轴于,两点,连接,,已知,.(Ⅰ)求抛物线的解析式和的值;(Ⅱ)在(Ⅰ)条件下:(1)为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.(2)设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒一个单位速度运动到点,再沿线段以每秒个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动中用时最少?解:(Ⅰ)把,代入,得,解得:.抛物线的解析式为联立,解得:或,点的坐标为.如图1.,,,,,,,是直角三角形,,;(Ⅱ)方法一:(1)存在点,使得以,,为顶点的三角形与相似.过点作轴于,则.设点的横坐标为,由在轴右侧可得,则.,,.若点在点的下方,①如图2①,当时,则.,,,..则.把代入,得,整理得:解得:(舍去),(舍去).②如图2②,当时,则.同理可得:,则,把代入,得,整理得:解得:(舍去),,,;若点在点的上方,①当时,则,同理可得:点的坐标为.②当时,则.同理可得:点的坐标为,.综上所述:满足条件的点的坐标为、,、,;方法二:作的“外接矩形”,易证,,以,,为顶点的三角形与相似,或,设,,,①,,,,②,,,(舍,满足题意的点的坐标为、,、,;(2)方法一:过点作轴于,如图3.在中,,即,点在整个运动中所用的时间为.作点关于的对称点,连接,则有,,,,.根据两点之间线段最短可得:当、、三点共线时,最小.此时,,四边形是矩形,,.对于,当时,有,解得:,.,,,,点的坐标为.方法二:作点关于的对称点,交于点,显然,作轴,垂足为,交直线于点,如图4,在中,,即,当、、三点共线时,最小,,,,,,,,,,,,为的中点,,,.方法三:如图,5,过作射线轴,过作射线轴,与交于点.,,.,,,,..当且仅当时,取得最小值,点在整个运动中用时最少为:,抛物线的解析式为,且,可求得点坐标为则点横坐标为2,将代入,得.所以.18.(2022·广东广州·统考中考真题)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF,①当CE丄AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【答案】(1);(2)①四边形ABEF的面积为;②最小值为12【分析】(1)证明△ABC是等边三角形,可得BO=,即可求解;(2)过点E作AD的垂线,分别交AD和BC于点M,N,根据菱形的面积可求出MN=,设BE=,则EN=,从而得到EM=MN-EN=,再由BE=DF,可得DF=,从而得到四边形ABEF的面积s=S△ABD-S△DEF,①当CE⊥AB时,可得点E是△ABC重心,从而得到BE=CE=BO=,即可求解;②作CH⊥AD于H,可得当点E和F分别到达点O和点H位置时,CF和CE分别达到最小值;再由,可得当,即BE=时,s达到最小值,从而得到此时点E恰好在点O的位置,而点F也恰好在点H位置,即可求解.【详解】(1)解∶连接AC,设AC与BD的交点为O,如图,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,AB∥CD,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论