版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市上蔡县实验中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..已知{an}是单调递增的等比数列,满足,则数列{an}的前n项和(A)
(B)
(C)
(D)参考答案:D2.一次选拔运动员,测得7名选手的身高(单位cm)分布茎叶图如图,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为()A.5 B.6 C.7 D.8参考答案:D【考点】众数、中位数、平均数;茎叶图.【分析】求这7组数的平均数,列出方程,即可解题【解答】解:解得x=8故选D3.设F1,F2为双曲线=1的两个焦点,点P在双曲线上,且满足=0,则△F1PF2的面积是()A.1 B. C. D.2参考答案:A【考点】双曲线的简单性质.【分析】设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x﹣y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得∴△F1PF2的面积.【解答】解:设|PF1|=x,|PF2|=y,(x>y)双曲线=1的a=2,b=1,c=,根据双曲线性质可知x﹣y=2a=4,∵=0,∴∠F1PF2=90°,∴x2+y2=4c2=20,∴2xy=x2+y2﹣(x﹣y)2=4,∴xy=2,∴△F1PF2的面积为xy=1.故选:A.4.若中心在原点,焦点在x轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.
B.
C.
D.参考答案:A略5.设等差数列{an}的前n项和为Sn,,,则等于(
)A.132 B.66 C.110 D.55参考答案:A【分析】设等差数列的公差为d,根据题意明确公差,进而得到,又,从而得到结果.【详解】设等差数列的公差为d,则即,∴,∴,故选A【点睛】本题考查了等差数列的通项公式,考查了等差数列的前n项和公式,考查等差数列的性质,是基础题.6.已知函数,若是函数的零点,且,则
恒为正值
等于0
恒为负值
不大于0参考答案:A7.有下列命题:①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。⑤有一个面是多边形,其余各面都是三角形的几何体是棱锥。其中正确的命题的个数为
(
)A.
B.
C.
D.参考答案:B8.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图象是(
)参考答案:B略9.若随机变量X服从两点分布,其中P(X=0)=,则E(3X+2)和D(3X+2)的值分别是() A.4和2 B. 4和4 C. 2和4 D. 2和2参考答案:A略10.已知是定义在上的函数,,那么“对任意的,恒成立”的充要条件是(
)A.对任意的,或
恒成立B.对任意的,恒成立或对任意的,恒成立C.对任意的,或
恒成立D.对任意的,恒成立且对任意的,恒成立参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.设抛物线,过焦点的直线交抛物线于两点,线段的中点的横坐标为,则=_____________.参考答案:12.已知,则________.参考答案:试题分析:考点:函数求导数13.由抛物线y=x2,直线x=1,x=3和x轴所围成的图形的面积是______.参考答案:【分析】由题意,作出图形,确定定积分,即可求解所围成的图形的面积.【详解】解析:如图所示,S=x2dx=1=(33-13)=.【点睛】本题主要考查了定积分的应用,其中根据题设条件,作出图形,确定定积分求解是解答的关键,着重考查了推理与运算能力,以及数形结合思想的应用,属于基础题.14.若x,y满足约束条件,则目标函数z=2x+y的最大值为.参考答案:6【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,﹣2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(4,﹣2)时,直线在y轴上的截距最大,z有最大值为2×4﹣2=6.故答案为:6.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.设直线与圆相交于两点,且弦的长为,则________.参考答案:0略16.对于∈N*,定义,其中K是满足的最大整数,[x]表示不超过x的最大整数,如,则(1)
。(2)满足的最大整数m为
。参考答案:(1)223(2)设m=10ka0+10k-1a1+……+10oai为不大于9的自然数,i=0,1,…,k,且a0≠0,则f(m)=(10k-1+10k-2+……+1)a0+(10k-210k-3…+1)·a1+…+ak-1,因为f(m)=100,而K=1时,f(m)<100,k>2时,f(m)>(10k-1+10k-2+…+1)·a0>100故k的值为2,所以f(m)=11a0+a,要使m最大,取a0=9,此时a1=1,再取a2=9,故满足f(m)=100的最大整数m为919。17.设F1、F2是椭圆的两个焦点,P是椭圆上的点,且PF1∶PF2=2∶1,则△PF1F2的面积等于
.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.19.已知数列是一个等差数列,且(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值.参考答案:解:(Ⅰ)设的公差为,由已知条件,,解出,.所以.(Ⅱ).
所以时,取到最大值.略20.已知集合.(1)若,求A∩B;(2)若A∩B=A,求实数a的取值范围.参考答案:(1)[1,2);(2)(-∞,1].试题分析:(1)根据集合的交集运算法则可求;(2)由交集与子集的关系,可以得出,利用分类讨论,可分析出.试题解析:由解得,所以,由得(1)时,,所以(2)∵,∴若时,显然不成立,若时,,,所以.21.函数的定义域为集合A,函数的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)若集合A,B满足,求实数a的取值范围.参考答案:(Ⅰ)A===,B=.(Ⅱ)∵,∴,∴或,∴或,即的取值范围是
略22.(本小题满分12分)某少数民族的刺绣有着悠久的历史,如下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.(1)求出的值;(2)利用合情推理的“归纳推理思想”,归纳出与之间的关系式,并根据你得到的关系式求出的表达式;(3)求的值。参考答案:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店管理岗位要求
- 体育行业安全意识宣传活动
- 康复科护士工作感悟
- 行业发展趋势把握
- 2024年智能制造项目担保合同3篇
- 老年科护士的工作总结
- 咨询服务行业前台工作心得
- 2024年度幼儿园教学资源开发合同
- 2024年度挡土墙工程智能化管理与维护合同3篇
- 创意手工糖果课程设计
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷号:1141)
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- GB/T 12602-2020起重机械超载保护装置
- 非参数统计讲义(课堂)课件
- 银行核心业务系统总体设计
- 2018年浙江省浙江省通用安装工程预算定额
- 小学生心肺复苏培训课件
- 地面工程 分项工程质量验收记录
- 沪教牛津版五年级下册英语全册课件
- 北京大学简介介绍PPT模板
- 鱼骨图模板1PPT课件
评论
0/150
提交评论