第章.3.同步训练及解析_第1页
第章.3.同步训练及解析_第2页
第章.3.同步训练及解析_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1人教A高中数学选修2-3同步训练1.(1+x)2n+1的展开式中,二项式系数最大的项所在的项数是()A.n,n+1 B.n-1,nC.n+1,n+2 D.n+2,n+3解析:选C.(1+x)2n+1展开式有2n+2项.系数最大的项是中间两项,是第n+1项与第n+2项,它们的二项式系数为Ceq\o\al(n,2n+1)与Ceq\o\al(n+1,2n+1).2.已知eq\b\lc\(\rc\)(\a\vs4\al\co1(\r(x)+\f(3,\r(3,x))))n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4 B.5C.6 D.7解析:选C.令x=1,各项系数和为4n,二项式系数和为2n,故有eq\f(4n,2n)=64.∴n=6.3.(x-1)11展开式中x的偶次项系数之和是()A.-2048 B.-1023C.-1024 D.1024解析:选C.(x-1)11=Ceq\o\al(0,11)x11+Ceq\o\al(1,11)x10(-1)+Ceq\o\al(2,11)x9·(-1)2+…+(-1)11,偶次项系数为负数,其和为-210=-1024.4.在(1-x)10中,系数最大的项为________.解析:(1-x)10中系数的绝对值即是二项式系数,第6项的二项式系数绝对值Ceq\o\al(5,10)最大,其次就是第5项和第7项,二项式系数为Ceq\o\al(4,10)或Ceq\o\al(6,10),但第6项的系数为负数.故第5项或第7项系数最大.答案:第5项或第7项一、选择题1.已知(2-x)10=a0+a1x+a2x2+…+a10x10,则a8等于()A.180 B.-180C.45 D.-45解析:选A.a8=Ceq\o\al(8,10)·22=180.2.二项展开式(2x-1)10中x的奇次幂项的系数之和为()A.eq\f(1+310,2) B.eq\f(1-310,2)C.eq\f(310-1,2) D.-eq\f(1+310,2)解析:选B.设(2x-1)10=a0+a1x+a2x2+…+a10x10,令x=1,得1=a0+a1+a2+…+a10,再令x=-1,得310=a0-a1+a2-a3+…-a9+a10,两式相减,可得a1+a3+…+a9=eq\f(1-310,2).3.在(a-b)20的二项展开式中,二项式系数与第6项二项式系数相同的项是()A.第15项 B.第16项C.第17项 D.第18项解析:选B.第6项的二项式系数为Ceq\o\al(5,20),与它相等的为倒数第6项,即第16项.4.(1+x)+(1+x)2+…+(1+x)n的展开式中各项系数和为()A.2n+1 B.2n-1C.2n+1-1 D.2n+1-2解析:选D.令x=1,则2+22+…+2n=2n+1-2.5.若eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20C.30 D.120解析:选B.由2n=64,得n=6,∴Tr+1=Ceq\o\al(r,6)x6-req\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))r=Ceq\o\al(r,6)x6-2r(0≤r≤6,r∈N).由6-2r=0,得r=3.∴T4=Ceq\o\al(3,6)=20.6.设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为()A.-2 B.-1C.1 D.2解析:选A.令x=-1,则原式化为[(-1)2+1][2×(-1)+1]9=-2=a0+a1(2-1)+a2(2-1)2+…+a11(2-1)11,∴a0+a1+a2+…+a11=-2.二、填空题7.若eq\b\lc\(\rc\)(\a\vs4\al\co1(x2+\f(1,x3)))n展开式的各项系数之和为32,则其展开式中的常数项是________.解析:展开式中各项系数之和为S=Ceq\o\al(0,n)+Ceq\o\al(1,n)+…+Ceq\o\al(n,n)=2n=32,∴n=5.Tr+1=Ceq\o\al(r,5)(x2)5-req\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x3)))r=Ceq\o\al(r,5)x10-2r-3r=Ceq\o\al(r,5)x10-5r,令10-5r=0,得r=2,∴展开式中的常数项为T3=Ceq\o\al(2,5)=10.答案:108.若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=________.(用数字作答)解析:由题设令x=0得a0=(-2)5=-32.令x=1得a5+a4+a3+a2+a1+a0=(1-2)5=-1,故a1+a2+a3+a4+a5=-1-(-32)=31.答案:319.若eq\b\lc\(\rc\)(\a\vs4\al\co1(x3+\f(1,x2)))n的展开式中,仅第六项系数最大,则展开式中不含x的项为________.解析:由题意知,展开式各项的系数即为各项的二项式系数.第六项系数最大,即第六项为中间项,故n=10.∴通项为Tr+1=Ceq\o\al(r,10)·(x3)10-r·(eq\f(1,x2))r=Ceq\o\al(r,10)·x30-5r.令30-5r=0,得r=6.∴常数项为T7=Ceq\o\al(6,10)=210.答案:210三、解答题10.已知(1-2x)7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a7(x-1)7.求:(1)a0+a1+a2+…+a7;(2)a0+a2+a4+a6.解:(1)令x=2,则(1-2×2)7=-37=a0+a1+a2+…+a7,∴a0+a1+a2+…+a7=-37.(2)令x=0,则a0-a1+a2-a3+…+a6-a7=1.又由(1)得,a0+a1+a2+…+a7=-37,两式相加,可得2(a0+a2+a4+a6)=1-37,∴a0+a2+a4+a6=eq\f(1,2)(1-37).11.已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14.(1)求a0+a1+a2+…+a14;(2)求a1+a3+a5+…+a13.解:(1)令x=1,则a0+a1+a2+…+a14=27=128.①(2)令x=-1,则a0-a1+a2-a3+…-a13+a14=67.②①-②得2(a1+a3+…+a13)=27-67=-279808.∴a1+a3+a5+…+a13=-139904.12.已知(1+3x)n的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知,Ceq\o\al(n,n)+Ceq\o\al(n-1,n)+Ceq\o\al(n-2,n)=121,即Ceq\o\al(0,n)+Ceq\o\al(1,n)+Ceq\o\al(2,n)=121,∴1+n+eq\f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论