湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题含解析_第1页
湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题含解析_第2页
湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题含解析_第3页
湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题含解析_第4页
湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施土家族苗族自治州宣恩县2023-2024学年九年级数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外2.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.83.用配方法解方程,方程应变形为()A. B. C. D.4.如图,正方形网格中,每个小正方形的边长均为1个单位长度.,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,.若四边形是正方形,则的值是()A.3 B.4 C.5 D.65.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.6.某商务酒店客房有间供客户居住.当每间房每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出元的费用.当房价定为多少元时,酒店当天的利润为元?设房价定为元,根据题意,所列方程是()A. B.C. D.7.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶38.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.129.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.10.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线 B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆 D.任意画一个平行四边形,是中心对称图形二、填空题(每小题3分,共24分)11.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.12.绕着A点旋转后得到,若,,则旋转角等于_____.13.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x轴、y轴的交点分别为A,B,点P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0;②x=3是ax2+bx+3=0的一个根;③△PAB周长的最小值是+3.其中正确的是________.14.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,…按此做法进行下去,其中弧的长为_______.15.如图,,如果,,,那么___________.16.方程的解是_____.17.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.18.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.20.(6分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:每袋的售价(元)…2030…日销售量(袋)…2010…如果日销售量y(袋)是每袋的售价x(元)的一次函数,请回答下列问题:(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?(提示:每袋的利润=每袋的售价每袋的成本)21.(6分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=,DE=3,求⊙O的半径及AC的长.22.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.23.(8分)已知的半径长为,弦与弦平行,,,求间的距离.24.(8分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A(5,0),B(2,6),点D为AB上一点,且,双曲线y1=(k1>0)在第一象限的图象经过点D,交BC于点E.(1)求双曲线的解析式;(2)一次函数y2=k2x+b经过D、E两点,结合图象,写出不等式<k2x+b的解集.25.(10分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动点在过三点的拋物线上.(1)求抛物线的解析式.(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标.并求出最大值是多少.(3)在轴上是否存在点,使得△是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.26.(10分)东方市在铁路礼堂举办大型扶贫消费市场,张老师购买5斤芒果和2斤哈密瓜共花费64元;李老师购买3斤芒果和1斤哈密瓜共花费36元.求一斤芒果和一斤哈密瓜的售价各是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.2、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.3、D【分析】常数项移到方程的右边,两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,

∴,即,

故选:D.【点睛】本题考查配方法解一元二次方程,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.4、A【分析】根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,相加即可得出.【详解】解:根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,得到A'B',则m+n=1.故选:A【点睛】本题考查的是线段的平移问题,观察图形时要考虑其中一点就行.5、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.6、D【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x元,根据题意,得故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.7、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,

∴,∵四边形是平行四边形,

∴,∥,

∴,,

∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.8、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.9、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B10、C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A、经过任意两点画一条直线,是必然事件,故此选项错误;B、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误;C、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误;故选:C.【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.二、填空题(每小题3分,共24分)11、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、50°或210°【分析】首先根据题意作图,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【详解】解:∵∠BAC′=130°,∠BAC=80°,

∴如图1,∠CAC′=∠BAC′-∠BAC=50°,

如图2,∠CAC′=∠BAC′+∠BAC=210°.

∴旋转角等于50°或210°.

故答案为:50°或210°.【点睛】本题考查了旋转的性质.注意掌握数形结合思想与分类讨论思想的应用.13、①②③【分析】①根据对称轴方程求得的数量关系;②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;③利用两点间线段最短来求△PAB周长的最小值.【详解】①根据图象知,对称轴是直线,则,即,故①正确;②根据图象知,点A的坐标是,对称轴是,则根据抛物线关于对称轴对称的性质知,抛物线与轴的另一个交点的坐标是,所以是的一个根,故②正确;

③如图所示,点关于对称的点是,即抛物线与轴的另一个交点.

连接与直线x=1的交点即为点,此时的周长最小,

则周长的最小值是的长度.

∵,

∴,,∴周长的最小值是,故③正确.

综上所述,正确的结论是:①②③.

故答案为:①②③.【点睛】本题考查的是二次函数综合题,涉及到二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.14、.【分析】连接,,,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【详解】连接,,

是上的点,

直线l解析式为,

为等腰直角三角形,即轴,

同理,垂直于x轴,

为圆的周长,

以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,

当时,

故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键.15、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.16、x1=2,x2=﹣1【解析】解:方程两边平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.经检验,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.17、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.18、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。三、解答题(共66分)19、详见解析.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【详解】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.20、(1);(2)P=;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.【分析】(1)用待定系数法即可求出一次函数的解析式;(2)根据日销售利润=每袋的利润×销售量即可得出日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)根据二次函数的性质求最大值即可.【详解】解:(1)设一次函数的表达式为:,将(,),(,)代入中得解得∴售量(袋)与售价(元)之间的函数表达式为.(2)()().(3)()(40)∴当时,∴当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.【点睛】本题主要考查二次函数的应用,掌握待定系数法是解题的关键.21、(1)DC是⊙O的切线,理由见解析;(2)半径为1,AC=【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;

(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得,推出r=1,可得OE=2,即有,可推出,则利用勾股定理和含有30°的直角三角形的性质,可求得OC=2,,再利用勾股定理求出即可解决问题;【详解】(1)证明:∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴,∴∴OE=3-1=2Rt△ABC中,∴∴Rt△BCO中,,Rt△ABC中,【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,熟悉相关性质定理是解题的关键.22、(1)证明见解析;(2)【解析】试题分析:(1)连接OE,证得OE⊥AC即可确定AC是切线;

(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.试题解析:解:(1)连接OE.∵OB=OE,∴∠OBE=∠OEB.∵∠ACB=90°,∴∠CBE+∠BEC=90°.∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线.(2)∵OE∥BC,∴△AOE∽△ABC,∴OE:BC=AE:AC.∵CE:AE=2:3,∴AE:AC=3:1,∴OE:BC=3:1.∵OE∥BC,∴△OEF∽△CBF,∴.点睛:本题考查了切线的判定,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.23、1或7【分析】先根据勾股定理求出OF=4,OE=3,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.【详解】如图,过点O作OE⊥CD于E,交AB于点F,∵,∴OE⊥AB,在Rt△AOF中,OA=5,AF=AB=3,∴OF=4,在Rt△COE中,OC=5,CE=CD=4,∴OE=3,当AB、CD在点O的同侧时,、间的距离EF=OF-OE=4-3=1;当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=3+4=7,故答案为:1或7.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.24、(1);(2)<x<1.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=1,得到D点坐标为(1,2),然后把D点坐标代入反比例函数表达式中,求出k的值即可得到反比例函数解析式;(2)观察函数图象即可求解.【详解】解:(1)过点B作BM⊥x轴于M,过点D作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴,即,解得:DN=2,AN=1,∴ON=OA﹣AN=1,∴D点坐标为(1,2),把D(1,2)代入y1=得,k=2×1=8,∴反比例函数解析式为;(2)由(1)知,点D的坐标为(1,2);对于,当y=6时,即6=,解得x=,故点E(,6);从函数图象看,<k2x+b时,x的取值范围为<x<1,故不等式<k2x+b的解集为<x<1.【点睛】本题主要考查反比例函数与一次函数的关系及相似三角形的判定与性质,关键是根据题意及相似三角形的性质与判定得到反比例函数的解析式,然后利用反比例函数与一次函数的关系进行求解即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论