




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题15概率知识点一有关随机事件的概率(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1.(1)、(2024上·四川宜宾·高二统考期末)袋子中装有4个大小质地完全相同的球,其中2个白球,2个红球,从中不放回地依次随机摸出2个球.记事件A=“第一次摸到白球”,事件B=“第二次摸到白球”,事件C=“两个球颜色相同”(
)A.事件A与事件B互斥 B.事件A与事件B独立C.事件A与事件B对立 D.事件C包含事件(2)、(2024上·湖北十堰·高三统考期末)有5张相同的卡片,分别标有数字1,2,3,4,5,从中有放回地随机取两次,每次取1张卡片.表示事件“第一次取出的卡片上的数字为2”,表示事件“第二次取出的卡片上的数字为1”,表示“事件两次取出的卡片上的数字之和为6”,表示事件“两次取出的卡片上的数字之和为7”,则(
)A.与相互独立 B.与相互独立C.与相互独立 D.与相互独立(3)、(2024上·陕西渭南·高一统考期末)下列说法正确的是(
)A.对立事件一定是互斥事件B.若是互斥事件,则C.甲乙两人独立地解同一道题,已知各人能解出该题的概率分别是0.5和0.25,则该题被解出的概率是0.75D.从中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是1.(2024上·内蒙古锡林郭勒盟·高二统考期末)将一枚均匀硬币连续抛掷两次,下列事件中与事件“至少一次正面向上”互为对立事件的是(
)A.至多一次正面向上 B.两次正面都向上C.只有一次正面向上 D.两次都没有正面向上2.(2024上·湖北恩施·高二恩施土家族苗族高中校考阶段练习)抛掷一枚质地均匀的骰子两次,设“第一次向上的点数是2”为事件,“第二次向上的点数是奇数”为事件,“两次向上的点数之和能被3整除”为事件,则下列说法正确的是(
)A.事件与事件互斥B.C.D.事件与事件不相互独立3.(2023下·湖南岳阳·高一统考期末)将一枚质地均匀且标有数字1,2,3,4,5,6的骰子随机掷两次,记录每次正面朝上的数字,甲表示事件“第一次掷出的数字是1”,乙表示事件“第二次掷出的数字是2”,丙表示事件“两次掷出的数字之和是8”,丁表示事件“两次掷出的数字之和是7”.则(
)A.事件甲与事件丙是互斥事件B.事件甲与事件丁是相互独立事件C.事件乙包含于事件丙D.事件丙与事件丁是对立事件知识点二有关古典概型的概率1.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.2.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是eq\f(1,n);如果某个事件A包括的结果有m个,那么事件A的概率P(A)=eq\f(m,n).3.古典概型的概率公式P(A)=eq\f(事件A包含的可能结果数,试验的所有可能结果数).例2.(1)、(2024上·陕西汉中·高一南郑中学校联考期末)为充分挖掘“汉风古韵”文化内涵,汉中市创新策划了“汉风年,老家过”2024年迎新春系列文化活动,活动围绕“潮、赏、购、趣、游”5个主题开展.某公司计划从5个主题中选取2个主题制作吉祥物,则主题“游”当选的概率为.(2)、(2023上·河南安阳·高一校联考期末)在足球比赛中通常要求双方穿着颜色不同的球衣,已知甲队有白、黑、红3种颜色的球衣,乙队有蓝、白、黑3种颜色的球衣.若甲、乙两队随机挑选一套球衣进行比赛,则他们的球衣颜色符合要求的概率为(
)A. B. C. D.(3)、(2023上·广东佛山·高二校联考期中)某戏曲学院图书馆藏有四部戏曲名著各10本,由于该戏曲学院的部分学生对《牡丹亭》这部戏曲产生了浓厚的兴趣,该戏曲学院图书馆决定购买一批《牡丹亭》戏曲书籍(其他三部数量保持不变)若干本.若要保证购买后在该戏曲学院图书馆所藏有的这四大戏曲名著中任取一本,使得能取到一本《牡丹亭》戏曲书籍的概率不小于0.6,则该戏曲学院图书馆需至少购买《牡丹亭》戏曲书籍(
)A.25本 B.30本 C.35本 D.40本1.(2023上·上海·高二上海市向明中学校考阶段练习)桌上有三个纸杯,正中间那一个有巧克力,现采取如下操作:将正中间那个纸杯和左右两边中的任意一个纸杯互换,记为一次操作,重复上述操作4次,则正中间纸杯中有巧克力的概率是.2.(2024上·四川凉山·高二统考期末)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不大于10的素数中,选两个不同的数,和为偶数的概率为(
)A. B. C. D.3.(2023上·广东佛山·高二校联考阶段练习)《易经》是中国文化中的精髓,如图,这是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,称为阳爻,表示一根阴线,称为阴爻),从八卦中任取一卦,则卦中阳爻比阴爻多的概率为(
)A. B. C. D.例3.(2024上·广西桂林·高一统考期末)2023年11月,首届全国学生(青年)运动会在广西举行.10月31日,学青会火炬传递在桂林举行,广西师范大学有5名教师参与了此次传递,其中男教师2名,女教师3名.现需要从这5名教师中任选2名教师去参加活动.(1)写出试验“从这5名教师中任选2名教师”的样本空间;(2)求选出的2名教师中至多有1名男教师的概率.例4.(2024上·四川巴中·高二统考期末)新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临选择物理还是历史的问题,某校进行了大数据统计,在1000名学生的问卷调查中,发现有800名学生选择了物理,200名学生选择了历史.(1)从这1000名学生中按选科比例选出五名学生将选科信息录入系统,同时在这五名学生中抽取两名学生作为组长,写出样本空间;(2)求出(1)中两名组长出自不同选科的概率.例5.(2024上·广东·高三统考学业考试)在一次猜灯速的活动中,共有20道灯谜,甲乙两名同学之间独立竞猜.甲同学猜对了16道,乙同学猜对了12道,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.例6.(2024上·云南大理·高二统考期末)算盘是我国古代一项伟大的发明,是一类重要的计算工具.如图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位、……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位分别随机拨动一粒珠子至梁上,设事件“表示的三位数能被5整除”,“表示的三位数能被3整除”.(1)求事件发生的概率;(2)求事件或发生的概率..知识点三有关长度的几何概率1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.3.几何概型的概率公式P(A)=eq\f(构成事件A的区域长度(面积或体积),试验的全部结果所构成的区域长度(面积或体积)).例7.(1)、(2023上·内蒙古包头·高三统考开学考试)一个路口的红绿灯,红灯的时间为40秒,黄灯的时间为5秒,绿灯的时间为45秒,当你到达路口时,看见黄灯的概率为(
)A. B. C. D.(2)、(2022下·内蒙古赤峰·高二统考期末)在区间上任取一个数x,若x满足的概率为,则实数m的值为(
)A.5 B.6 C.7 D.81.(2023·江西抚州·金溪一中统考模拟预测)在区间[0,π]上随机取一个数x,则事件“”的概率为(
)A. B. C. D.2.(2022上·陕西榆林·高二校考期末)在区间内随机取一个实数,则的概率为(
)A. B. C. D.知识点四有关面积的几何概率例8.(1)、(2023·贵州毕节·校考模拟预测)勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用.正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称.我国古代数学家赵爽在所注解的《周髀算经》中给出了一种勾股定理的绝妙证明.如图,这是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股勾)=4×朱实+黄实=弦实,化简得勾+股=弦.设勾股形中勾股比为5∶12,现给弦图内的4个朱色三角形分别作内切圆,并向弦图内随机抛掷1粒芝麻(大小忽略不计),则芝麻落在所作的4个内切圆中的概率为(
)A. B. C. D.(2)、(2023·内蒙古包头·统考二模)小王家订了一份报纸,送报人可能在早上之间把报送到小王家,小王离开家去工作的时间在早上之间.用A表示事件:“小王在离开家前能得到报纸”,设送报人到达的时间为x,小王离开家的时间为y,看成平面中的点,则用几何概型的公式得到事件A的概率P(A)等于(
)A. B. C. D.1.(2022·甘肃临夏·统考一模)如图是一张剪纸窗花,外部正六边形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年演出经纪人之演出经纪实务模拟题库(能力提升)
- 生物-2025年中考考前最后一卷试题押题猜想(陕西卷)
- 八年级英语上册新教材解读课件(人教版2024)
- 急性腹痛问诊要点2025
- 河南省周口市扶沟县2023-2024学年七年级下学期7月期末考试英语试题(含答案无听力音频及原文)
- 甘肃省酒泉市敦煌中学2024-2025学年高一上学期期中考试数学(B)试卷(含答案)
- 2025年云南中考数学第一次模拟试卷(无答案)
- 2025年广东省广州市花都区中考二模道德与法治试卷(含答案)
- 2025室内墙面涂料供货合同样本范文
- Tiagabine-d6-NO050328-d-sub-6-sub-生命科学试剂-MCE
- 西方经济学章节练习题题库及答案1-16章(全)
- 全国交通运输行业“捷安杯”城市轨道交通服务员(职业组)职业技能竞赛题库及答案
- 设备日常点检培训30
- 电动车充电突发事件应急预案演练记录
- 办公室主任培训[1]ppt课件
- 特应性皮炎治疗中创新药的竞争格局分析
- 射阳汉鼎新能源科技有限公司分布式光伏并网发电项目电站运维合同
- 护理查房胎盘早剥
- 分部开工申请表
- 肺炎住院病历及病程记录教学文案
- 部编版四年级语文下册第八单元集体备课教材分析
评论
0/150
提交评论