版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省浏阳一中等湘东五校中学2024届高三第二次诊断性检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则与的夹角为()A. B. C. D.2.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.63.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.5.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A. B. C. D.6.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.7.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.9.在中,角、、所对的边分别为、、,若,则()A. B. C. D.10.设,且,则()A. B. C. D.11.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知函数,则()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,则____________.14.不等式对于定义域内的任意恒成立,则的取值范围为__________.15.如图所示,平面BCC1B1⊥平面ABC,ABC=120,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.16.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.18.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求;②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.19.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.20.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.22.(10分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.2、C【解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.3、D【解析】
通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.4、D【解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.5、D【解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【详解】易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.故选D.【点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.6、D【解析】
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.7、C【解析】
化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.8、D【解析】
由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【详解】解:如图,
∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,
∴
设正方体的棱长为,则,∴.
取,连接,则共面,在中,设到的距离为,
设到平面的距离为,
.
故选D.【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.9、D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.10、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.11、A【解析】
设成立;反之,满足,但,故选A.12、C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:【点睛】本题考查集合的交集运算,考查解一元二次不等式.14、【解析】
根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.【详解】解:已知对于定义域内的任意恒成立,即对于内的任意恒成立,令,则只需在定义域内即可,,,当时取等号,由可知,,当时取等号,,当有解时,令,则,在上单调递增,又,,使得,,则,所以的取值范围为.故答案为:.【点睛】本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.15、【解析】
将平移到和相交的位置,解三角形求得线线角的余弦值.【详解】过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.16、【解析】
设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【详解】设桶的底面半径为,高为,则,故,圆通的造价为解法一:当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调递减;令,即,解得,即当时,圆桶的造价最低.所以故答案为:【点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析;定点坐标为【解析】
(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点【点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.18、(1)分布列见解析;(2)①;②,.【解析】
(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得.【详解】(1)记一轮投球,甲命中为事件,乙命中为事件,相互独立,由题意,,甲的得分的取值为,,,,∴的分布列为:-101(2)由(1),,同理,经过2轮投球,甲的得分取值:记,,,则,,,,由此得甲的得分的分布列为:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴数列是等比数列,公比为,首项为,∴.∴.【点睛】本题考查随机变量的概率分布列,考查相互独立事件同时发生的概率,考查由数列的递推式求通项公式,考查学生的转化与化归思想,本题难点在于求概率分布列,特别是经过2轮投球后甲的得分的概率分布列,这里可用列举法写出各种可能,然后由独立事件的概率公式计算出概率.19、(1),;(2)【解析】
(1)由奇函数可知在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于恒成立的问题,常转化为求的最小值,使;对于恒成立的问题,常转化为求的最大值,使.20、(1)证明见详解;(2)【解析】
(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;
(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.【详解】解:(1)由题知,∵函数在,处取得极值1,,且,,,令,则为增函数,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,则令,则,,,在上单调递增,且,有唯一零点,且,当时,,,单调递减;当时,,,单调递增.,由整理得,令,则方程等价于而在上恒大于零,在上单调递增,.,∴实数的取值范围为.【点睛】本题考查了函数的极值,利用导函数判断函数的单调性,函数的零点存在定理,证明不等式,解决不等式恒成立问题.其中多次构造函数,是解题的关键,属于综合性很强的难题.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水果冷饮配送监管协议模板
- 精简版土地租赁合同样本
- 2024版产品供货合同协议书编写
- 配偶间房屋买卖协议书范例
- 怡清网络家园公司广告合同的法律规定
- 标准房地产抵押合同范文大全
- 2024餐馆转让协议书模板
- 工业园区合作伙伴协议样本
- 政府机关电脑购买合同
- 规范土地租赁协议示范
- 2024内蒙古阿拉善盟“智汇驼乡鸿雁归巢”引进高学历人才49人笔试模拟试题及答案解析
- 临床营养科各岗位职责及各项规章制度
- 《创想候车亭》课件2024-2025学年岭美版(2024)初中美术七年级上册
- 心肺复苏术课件2024新版
- 第4单元表内除法(一)应用题(专项训练)-2024-2025学年二年级上册数学苏教版
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 起重机械安全技术规程(TSG-51-2023)宣贯解读课件
- 职业倦怠量表MBIGS (MBIGeneral Survey)
- 中医养生中医养生与体质调护课件
- 《上海市奉贤区小区机动车停放管理工作调查报告》4300字
- 建筑装饰工程资料管理培训PPT
评论
0/150
提交评论