版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10.3事件的相互独立性(重难点题型精讲)1.事件的相互独立性(1)定义
对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质
若事件A与B相互独立,则与B,A与,与也相互独立.
(3)应用
因为“A与B相互独立”是“P(AB)=P(A)P(B)”的充要条件,所以如果已知两个事件是相互独立的,则由它们各自发生的概率可以迅速得到它们同时发生的概率.在实际问题中,我们常常依据实际背景去判断事件之间是否存在相互影响,若认为事件之间没有影响,则认为它们相互独立.
(4)推广
两个事件的相互独立性可以推广到n(n>2,n∈)个事件的相互独立性,即若事件,,,相互独立,则这n个事件同时发生的概率P()=P()P()P().2.互斥事件与相互独立事件的辨析(1)互斥事件与相互独立事件都描述的是两个事件间的关系,但互斥事件强调不可能同时发生,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.用表格表示如下:相互独立事件互斥事件判断方法一个事件的发生与否对另一个事件发生的概率没有影响.两个事件不可能同时发生,即AB=.概率公式若事件A与B相互独立,则P(AB)=P(A)P(B).若事件A与B互斥,则P(A∪B)=P(A)+P(B),反之不成立.(2)已知事件A,B发生的概率分别为P(A),P(B),我们有如下结论:事件表示概率(A,B互斥)概率(A,B相互独立)A,B中至少有一个发生P(A∪B)P(A)+P(B)1P()P()或P(A)+P(B)P(AB)A,B都发生P(AB)0P(A)P(B)A,B都不发生P()1[P(A)+P(B)]P()P()A,B恰有一个发生P(A∪B)P(A)+P(B)P(A)P()+P()P(B)A,B中至多有一个发生P(∪A∪B)11P(A)P(B)【题型1独立性的判断】【方法点拨】(1)定量法:利用P(AB)=P(A)P(B)是否成立可以准确地判断两个事件是否相互独立.(2)定性法:直观地判断一个事件发生与否对另一个事件的发生的概率是否有影响,若没有影响就是相互独立事件.【例1】(2022·全国·高三专题练习)下列事件中A,B是相互独立事件的是(
)A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2白,2黑的小球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”【解题思路】利用相互独立事件的概念,对四个选项逐一分析排除,从而得出正确选项.【解答过程】解:对于A中,把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是独立事件;对于B:两个事件是不放回地摸球,显然A事件与B事件不相互独立;对于C,事件A,B应为互斥事件,不相互独立;对于D是条件概率,事件B受事件A的影响.故选:A.【变式11】(2023·高一课时练习)袋中有黑、白两种颜色的球,从中进行有放回地摸球,用A1表示第一次摸得黑球,A2表示第二次摸得黑球,则A1与AA.相互独立事件 B.不相互独立事件C.互斥事件 D.对立事件【解题思路】根据相互独立事件的含义即可判断.【解答过程】由题意可得A2即A2故每次是否摸到白球互不影响,故事件A1与A由于A1与A故选:A.【变式12】(2022秋·广东梅州·高二阶段练习)抛掷一红一绿两枚质地均匀的骰子,记下股子朝上面的点数.用x表示红色股子的点数,用y表示绿色骰子的点数,用x,y表示一次试验的结果.定义事件:A=“x+y为奇数”,事件B=“x=y”,事件C=“x>4”,则下列结论不正确的是(
A.PA=3PB B.AC.B与C独立 D.A与B独立【解题思路】A选项,利用古典概型求概率公式得到PA,PB,从而得到PA=3PB;由PA∩B=0得到B正确;求出【解答过程】由题意得:当x,y一奇一偶时,x+y为奇数,若x为奇数,y为偶数,有3×3=9种情况,同理若x为偶数,y为奇数,有3×3=9种情况,则共有2×3×3=18种情况则PAPB=6因为当x,y一奇一偶时,x+y为奇数,故x≠y,同理当x=y时,x+y一定是偶数,故PA∩B=0,“x>4”包含x=5或6,而y可能取值为6种,故共有2×6=12种情况,故P而事件B∩C包含两种情况,即5,5,6,6,故由PBC=PB⋅PC因为PAB=0≠PAPB故选:D.【变式13】(2023秋·浙江绍兴·高三期末)数字1,2,3,4,5,6组成没有重复数字的的六位数,A表示事件“1和2相邻”,B表示事件“偶数不相邻”,C表示事件“任何连续两个位置奇偶性都不相同”,D表示事件“奇数按从小到大的顺序排列”.则(
)A.事件A与事件B相互独立 B.事件A与事件C相互独立C.事件A与事件D相互独立 D.事件B与事件C相互独立【解题思路】根据排列组合分别计算概率,进而根据相互独立事件满足的概率公式即可求解.【解答过程】P(A)=A2对于A,P(AB)=C对于B,P(AC)=C对于C,P(AD)=C对于D,PBC故选:C.【题型2相互独立事件的概率】【方法点拨】利用相互独立事件的概率乘法公式,进行求解即可.【例2】(2023秋·山东济宁·高二期末)假设PA=0.3,PB=0.4,且A与B相互独立,则A.0.12 B.0.58 C.0.7 D.0.88【解题思路】根据独立事件的并事件的概率公式计算.【解答过程】由A与B相互独立,则PA∪B故选:B.【变式21】(2022·高一课时练习)已知事件A,B相互独立,P(A)=0.4,P(B)=0.3,给出下列四个式子:①P(AB)=0.12;②P(AB)=0.18;③P(AB)=0.28;④P(AB)=0.42.其中正确的有()A.4个 B.2个C.3个 D.1个【解题思路】根据独立事件的概率公式,进行求解即可.【解答过程】根据事件A,B相互独立,P(A)=0.4,P(B)=0.3,知在①中,P(AB)=P(A)P(B)=0.4×0.3=0.12,故①正确;在②中,P(B)=P()P(B)=0.6×0.3=0.18,故②正确;在③中,P(A)=P(A)P()=0.4×0.7=0.28,故③正确;在④中P()=P()P()=0.6×0.7=0.42,故④正确,故选A.【变式22】(2022春·安徽安庆·高一期末)设事件A,B相互独立,PA=0.6,PB=0.3,则A.0.36 B.0.504 C.0.54 D.0.9【解题思路】根据独立事件的概率计算公式,结合题意,带值求解即可.【解答过程】根据题意,AB与AB互斥,A,B相互独立,B,A故PAB=0.6×0.7+0.4×0.3=0.54.故选:C.【变式23】(2022春·山西太原·高一期末)设A,B,C是一个随机试验中的三个事件,且PA>0,PB①若A与B互斥,则PAB②若A与B独立,则PA∪B③若A,B,C两两独立,则PABC④若PABC=PAPBPC则其中正确结论的个数为(
)A.0 B.1 C.2 D.3【解题思路】根据互斥事件、对立事件以及相互独立事件的性质逐个判定即可【解答过程】对A,若A与B互斥,则根据互斥事件不能同时发生可得PAB=0,又PA对B,若A与B独立,则PA∪B对C,若A,B,C两两独立,且PABC=PAPBPC对D,若PABC=PAPBPC,则事件AB与C故选:B.【题型3事件相互独立的应用】【方法点拨】实际问题中,计算相互独立事件同时发生的概率,先用字母表示出事件,再分析题中涉及的事件.对于计算问题:将题中所求事件转化为若干个独立事件的交事件,利用独立事件的性质和推广求解.【例3】(2022·高一单元测试)甲、乙、丙三人能独立解决某一问题的概率分别是15,14,13A.160 B.320 C.1330【解题思路】设此三人至少有一个人把此问题解决为事件A,计算出三人都没有把此问题解决的概率,再由间接法可得答案.【解答过程】设此三人至少有一个人把此问题解决为事件A,三人都没有把此问题解决的概率是1−1则此三人至少有一个人把此问题解决的概率是PA故选:D.【变式31】(2022·高二单元测试)一个袋子中有4个红球,n个绿球,采用不放回的方式从中依次随机地取出2个球,若取出第二个球是红球的概率为0.4,那么n的值是(
)A.3 B.4 C.6 D.8【解题思路】结合已知条件,分类讨论第一个球的颜色,按照独立事件的乘法公式即可求解.【解答过程】若取出的第一个球为红色,则第二个球也是红色的概率P1若取出的第一个球为绿色,则第二个球是红色的概率P2所以取出第二个球是红色的概率P=P解得,n=6.故选:C.【变式32】(2022春·黑龙江绥化·高二期中)某学校餐厅就餐刷卡器是由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则刷卡器能正常工作.如果各个元件能否正常工作相互独立,元件1、元件2正常工作的概率都是35,元件3正常工作的概率是2527,那么该刷卡器能正常工作的概率为(A.23 B.79 C.89【解题思路】利用对立事件的概率求出元器件1和2至少一个正常工作的概率,再由相互独立事件同时发生的概率公式求刷卡器正常工作的概率即可.【解答过程】该刷卡器能正常工作需要元器件1和2至少有一个正常工作,同时元器件3正常工作,所以刷卡器能正常工作的概率P=(1−2故选:B.【变式33】(2022·高一单元测试)高一年级某同学参加了学校“数学社”“物理社”“话剧社”三个社团的选拔,该同学能否成功进入这三个社团是相互独立的.假设该同学能够进入“数学社”“物理社”“话剧社”三个社团的概率分别为m,n,15,该同学进入两个社团的概率为320,且三个社团都进不了的概率为25,则m+n=A.712 B.112 C.815【解题思路】利用相互独立事件的概率乘法公式,列出关于m,n的方程组,求解即可.【解答过程】解:由题意可知,该同学可以进入两个社团的概率为320则mn⋅(1−15又三个社团都进不了的概率为310所以(1−m)(1−n)(1−15由①②可得,m+n=7故选:A.【题型4互斥事件、事件的相互独立性的综合应用】【方法点拨】阅读题目,分析事件之间的关系,一般将问题划分为若干个彼此互斥的事件,然后运用互斥事件的概率加法公式和相互独立事件的概率乘法公式求解.【例4】(2022秋·陕西榆林·高二阶段练习)甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10:10平后,先多得2分者为胜方.在10:10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球时甲得分的概率为35,乙发球时甲得分的概率为13,各球的结果相互独立,在双方10:10平后,甲先发球,则甲以13:11赢下此局的概率为(A.425 B.225 C.875【解题思路】由题意,分为乙分别在第一二场胜两种情况,结合概率的乘法公式以及加法公式,可得答案.【解答过程】由题意,此局分两种情况:(1)后四球胜方依次为甲乙甲甲,概率为:35(2)后四球胜方依次为乙甲甲甲,概率为:25所以,所求事件概率为225故选:C.【变式41】(2022·高一单元测试)甲、乙两人比赛,每局甲获胜的概率为13,各局的胜负之间是独立的,某天两人要进行一场三局两胜的比赛,先赢得两局者为胜,无平局.若第一局比赛甲获胜,则甲获得最终胜利的概率为(
A.13 B.59 C.23【解题思路】分两种情况(甲第二局获胜或甲第二局负,第三局获胜)讨论得解.【解答过程】解:根据题意知只需考虑剩下两局的情况,(1)甲要获胜,则甲第二局获胜,此时甲获得最终胜利的概率为13(2)甲要获胜,则甲第二局负,第三局获胜,所以甲获得最终胜利的概率为23故甲获得最终胜利的概率为13故选:B.【变式42】(2022·全国·高三专题练习)2021年神舟十二号、十三号载人飞船发射任务都取得圆满成功,这意味着我国的科学技术和航天事业取得重大进步.现有航天员甲、乙、丙三个人,进入太空空间站后需要派出一人走出太空站外完成某项试验任务,工作时间不超过10分钟,如果10分钟内完成任务则试验成功结束任务,10分钟内不能完成任务则撤回再派下一个人,每个人只派出一次.已知甲、乙、丙10分钟内试验成功的概率分别为45,34,23A.910 B.1920 C.2930【解题思路】把试验任务成功的事件拆成三个互斥事件的和,再求出每个事件的概率,然后用互斥事件的概率加法公式计算作答.【解答过程】试验任务成功的事件M是甲成功的事件M1,甲不成功乙成功的事件M2,甲乙都不成功丙成立的事件事件M1,M2,M3互斥,P(M1所以试验任务成功的概率P(M)=P(M故选:D.【变式43】(2022·全国·统考高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大【解题思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Nifurzide-生命科学试剂-MCE
- Neoandrographolide-Standard-生命科学试剂-MCE
- 高层结构建筑课程设计
- 美育菜单课程设计
- 幼儿园日零报告制度
- 施工消防安全管理方案
- 画太阳完整课程设计
- 员工利润分享与事业合伙人计划.方案
- 胡同研学课程设计
- 2025届浙江省杭州市杭州七县市区物理高三第一学期期末综合测试试题含解析
- 临时用地复耕方案
- 二年级上数学老师家长会ppt.ppt
- 办理营业执照委托书
- 危险货物道路运输安全卡4
- 船舶电气安装理论图纸相结合PPT课件
- 道路交通标志与标线PPT课件
- 幕墙打胶工艺
- 新冀教版九年级英语上册第26课课件
- 编写标准必备文件 国家标准 地方标准 行业标准 企业标准 格式模板大全
- 《钻木取火》PPT
- 2021-2025乡村5年规划三篇
评论
0/150
提交评论