虎门外国语学校2024届高三下学期第六次检测数学试卷含解析_第1页
虎门外国语学校2024届高三下学期第六次检测数学试卷含解析_第2页
虎门外国语学校2024届高三下学期第六次检测数学试卷含解析_第3页
虎门外国语学校2024届高三下学期第六次检测数学试卷含解析_第4页
虎门外国语学校2024届高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

虎门外国语学校2024届高三下学期第六次检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,当输出的时,则输入的的值为()A.-2 B.-1 C. D.2.已知角的终边与单位圆交于点,则等于()A. B. C. D.3.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④4.已知函数,当时,恒成立,则的取值范围为()A. B. C. D.5.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.6.已知为等比数列,,,则()A.9 B.-9 C. D.7.在中,角、、所对的边分别为、、,若,则()A. B. C. D.8.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同9.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件11.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.12.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.14.的展开式中,项的系数是__________.15.在中,角的对边分别为,且.若为钝角,,则的面积为____________.16.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.18.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.19.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.21.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.22.(10分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;综上选B.2、B【解析】

先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.3、A【解析】

根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.4、A【解析】

分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.5、A【解析】

由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.6、C【解析】

根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.7、D【解析】

利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.8、A【解析】

设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.9、D【解析】

通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.10、B【解析】

解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.11、D【解析】

首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.12、C【解析】

先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.14、240【解析】

利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.15、【解析】

转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以.又因为,且为锐角,所以.由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16、【解析】

根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【点睛】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)见解析(II)(III)【解析】试题分析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,由题意可得平面的法向量,且,据此有,则平面.(Ⅱ)由题意可得平面的法向量,结合(Ⅰ)的结论可得,即平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,则,而平面的法向量,据此可得,解方程有或.据此计算可得.试题解析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,如图,则,,,,∴,,设平面的法向量,∴不妨设,又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,设平面的法向量,∴不妨设,∴,∴平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,∴,∴,又∵平面的法向量,∴,∴,∴或.当时,,∴;当时,,∴.综上,.18、(1),(2)【解析】

(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.19、(1);(2)【解析】

(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.20、(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;(Ⅱ)设直线,直线,,,,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.【详解】(Ⅰ)设的周长为,则,当且仅当线段过点时“”成立.,,又,,椭圆的标准方程为.(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.设,,,,,.将直线的方程代入椭圆方程得:.,,.同理,.由得,此时.直线,联立直线与直线的方程得,即点在定直线.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的逻辑推理能力和运算能力,属于难题.21、(1)见解析;(2).【解析】

(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.【点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论