




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
䇢ᐸ:ZacWeightingsinFRMPartĉ1234¾••¾¾¾•••••••••¾¾Bond.5.DiscountBasicMethodReplicationMethodBondP&LComponentsReviews¾¾SpotRatezAt-periodspotrate,orzerorate,istheinterestrateearnedwhencashisreceivedatjustonefuturetime.zTherelationshipbetweenspotratesandmaturityiscalledthetermstructurespotrates.ForwardRatezForwardratesinterestratescorrespondingtoafutureperiodimpliedbythespotcurve.zAllforwardratescomputedusingspotrates,andallspotratescanbecomputedusingtheappropriateforwardrates.1+Rଵభ1+ଵ,ଶమିభ=1+RଶRଶଶെRଵTeభ×eభ=eమ՜ଵ,ଶ=ଶെTDiscount¾DiscountzThediscountd(t),foraterm(t)years,givesthepresentoneunitcurrency($1)bereceivedattheendthatterm.rtdt=1+dt=m0.5.51122.53Spot,ForwardRates¾¾¾ForwardRateandSpotRate0110.94%F.ହ,ଵ21.37%21+1+=1+2F.ହ,ଵ=1.79%7BasicMethodHowdeterminethepriceabond?ଵCଶC(1+S)C୲(1+y)P=++ڮ+=1+ଵ(1+Sଶ)ଶzSupposethata2-yearbondwithaprincipal$100providescouponsattherate6%perannumTheratescomputethebondprice:TreasuryZeroRatesMaturity(Years)ZeroRate(%)(continuouslyCompounded)0.55.011.5.02P=3eି.ହ×.ହ+3eି.ହ଼×ଵ+3eି.ସ×ଵ.ହ+103e=98.398BasicMethodExampleThetablebelowshowsselectedT-bondpricesforsemiannualcoupon,$100facebonds.Calculatediscountfactorsforthesegivenbondprices.BondCouponMaturityPrice124%0.51101-236.3%104-22+4%2332Bond1:100+100××d0.5=101+2d0.5=0.99726.3%26.3%222.532Bond2:100××d0.5+100+100××d1=104+d1=0.9845BasicMethod¾¾¾PricingBondusingDiscountFactors,SpotRates,orForwardRateszAssumea1-yeartreasurybondthata8%semi-annualcoupon.MaturitySpotRate(%)Discount6MonthForwardRate(%)0.501.001.502.002.500.941.371.822.513.080.9953030.9864780.9732140.9513360.9265470.941.792.734.585.37BasicMethodPricingBondusingDiscountFactors,SpotRates,orForwardRateszCalculatetheBondPriceusingDiscountPrice=$4×0.995303$104×0.986478=$106.57CalculatetheBondPriceusingSpotRates+z$04.94%2$104Price=+=$106.571.37%1+1+2zCalculatetheBondPriceusingForwardRates$04.94%$104×Price=+=$106.570.94%21.79%1+21+1+2ReplicationMethodLawoneprice:zAbsentconfoundingfactors(e.g.,financing,taxes,creditrisk),identicalsetscashflowsshouldsellforthesameprice.Whilethelawonepriceisintuitivelyreasonable,itsjustificationrestsonastrongerfoundation.Itturnsoutthatadeviationthelawonepriceimpliestheexistenceanarbitrageopportunity,thatis,atradethatgenerateswithoutanychancelosingzWhenmispricinghappens,arbitragemaynotoccurbecausefactorsotherthanpromisedcashflowsoccasionallyconsideredinthewaytheinstrumentspriced,suchastaxtreatmentandReplicationMethod¾ExampleThreebondyieldsandpricesshownbelowꢀMaturityYTMCouponPrice(%par)95.2381231year2years2years5%6%6%0%0%6%99.00100The2-yearspotrateis6.2%.Isthereanarbitrageopportunityusingthesethreebonds?Ifso,describethetradesnecessaryexploitthearbitrageopportunity?ReplicationMethod¾Example$10001.06Bond1.06Bond2$100$6$6+$1001Bond30.06Bଵ+1.06Bଶ=Bଷ0.06×95.238+1.06×99.00=110.6543Bonds3isundervalued,sobuybond3.Bond1andBond2overvalued,thensellthemReplicationMethod¾ExampleTime=01year2years(cost6%-1,000,000.00+60,000(coupon)+1,060,000(coupon)-60,000(maturity)couponbonds)(proceeds+57,142.800%couponbonds)(proceed%couponbonds)+1,049,400.00-1,060,0000+106,542.80Net00(maturity)BasicMethod¾PriceanAnnuityzAnannuitywithsemiannualpaymentsisasecuritythatapaymentc/2everysixmonthsforTyearsbutneverafinal“principal”payment(i.e.,FV=0).ThepriceanA(T),isgivenby:Cy1A=1െy21+¾PriceanPerpetuityzAperpetuitybondisabondthatcouponsThepriceaperpetuityissimplythecoupondividedbytheyield.Priceaperpetuity=c/yzBondReturn¾GrossRealizedReturnsP+cെPR୲=PzzIfwantlookatthereturnoveralongerperiod,mustconsidertheinvestmentthecouponas.Supposethattheinitialpurchasepriceabondis$98,andthepurchaseoccurredimmediatelyafteracouponpaymentdate.Itearns$1.75couponeverysixmonths.Ayearlaterthepriceis98.7.Assumingthatthecouponcanbeinvestedatanannualizedrate2.2%(semi-annualcompounding),thegrossrealizedreturnis:98.7െ98+1.75+1.75×1+1.1%=0.043198BondReturn¾zzIncorporatesfundingcostP+cെBR୲=PContinuetheexample,assumingthatthefundsbuyfinancedat%perannum(semi-annualcompounding),thenetrealizedreturnis:8.7െ98×1+1.5%ଶ+1.75+1.75×1+1.1%39=0.012898BondReturnthecouponpaymentscanbereinvestedataninterestrateequaltotheyieldtomaturitythebondisheldmaturityIfthebondisnotheldtheinvestorfacestheriskthathemayhavesellforlessthanthepurchaseprice,resultingareturnthatislessthantheyieldknownasinterestraterisk.Reinvestmentriskexist.Futureinterestratescanbelessthantheyieldmaturityatthetimebondispurchased,knownasreinvestmentrisk.BondReturn¾YieldMaturityzTheYTMabondisthesinglediscountrateatwhichallcashflowsthebonddiscountedandsummeduptheprice.Example:Supposeabond$40everysixmonthsforfouryearsandafinalpayment$1,000atmaturityinfouryears.Ifthepriceis$850,calculatetheYTM.z9Answer:TheYTMistheythatsolvesthefollowingequation:$40y2$40y2$40+$1000$850=++ڮ+y21+1+1+FV=$1000;PV=-850;PMT=40;N=8ꢀꢁ&37ମ,ꢂ<6.46ମ<7012.92%BondReturn¾ExampleAbondwitha$100a4%couponannuallyfor3years.Thespotratescorrespondingthepaymentdatesasfollows:year1:4.5%;year2:5%;year3:5.5%.CalculatethepricethebondusingspotratesanddetermineintheYTMforthebond.zAnswer:Thepricethebondusingthespotratesisasfollows.44104P=++=96.02371.0451.05ଶ1.055ଷzComputetheYTM:441041+YTM96.0237=++1+YTM1+YTMFV=$100;PV=-ꢃꢄꢅꢆꢇꢈꢉꢀꢁ307ꢊꢀꢁ1ꢈꢀꢁ&37ମ,ꢂ<ꢋꢅꢊꢉମ<70ꢋꢅꢊꢉꢌBondReturn¾RelationshipbetweenSpotRatesandYTMଵ+YTMCFଶ1+YTMCF୬1+YTMP=++ڮ+1ଵ+RଵCFଶ1+RଶCF୬1+R୬=++ڮ+1zzYTMisakindaverageallthespotrates.Whenisaflattermstructurespotrates,theyieldmustequalthosespotrates.zzWhenthetermstructurespotratesisupward-sloping,theyieldthetwo-yearbondwillbebelowthetwo-yearspotrate(usetwo-yearbondasexample).Whenthetermstructurespotratesisdownward-sloping,theyieldthetwo-yearbondwillbeabovethetwo-yearspotrate.BondReturnInterestRateInterestRate98765439876543ForwardCurveSpotCurveYieldCurveYieldCurveSpotCurveForwardCurve012345678910012345678910Upward-SlopingDownward-SlopingBondReturn¾CouponEffectzThefactthatcorrectlypricedbondswiththesamematuritybutdifferentcouponshavedifferentyieldstomaturityiscalledthecouponeffect.zAsthecouponrises,theaveragetimeittakesbondholderstorecovertheircashflowsfalls.Therefore,thespotratesfortheearlypaymentdatesisbecomingmoreimportantindeterminingtheyieldtomaturity.领取考前题唯一微:xuebajun888s99upward-slopingtrend,theyieldmaturityfallsasthecouponrises.downward-slopingtrend,theyieldmaturityrisesasthecouponrises.BondReturn¾¾¾azThepriceasecurityisbydiscountingacashflowsusinganappropriatetermstructureplusaspread.ccP=++ڮ1+f1+s1+f1+s1+f2+sc+F+1+f1+s1+f2+s…1+fT+s2P&LComponentsDecompositionP&Lz99zTheandlossconsistsboth:Priceappreciation(ordepreciation);a.k.a.,capitalgainorloss.Cash-carry:cashflowssuchascouponpayments.Priceappreciationcanbedecomposedintothreecomponents:ķCarry-roll-down:thepricechangeduethepassagetimeratesmoveasexpectedbutwithnochangeinthespread.Themostcommonassumptionwhenthecarryroll-downiscalculatedisthatforwardratesrealized(i.e.,theforwardrateforafutureperiodremainsunchangedasmovethroughtime).P&LComponentsDecompositionP&LĸRatechange:thepriceeffectrateschangingtheintermediatetermstructuretothetermstructurethatactuallyattimet+1.ĹThepriceappreciationduetoaspreadchangeisthepriceeffectduetotheindividualspreadchangings(t)tos(t+1).P&LComponents¾ExampleStartperiod201020112012priceP&L1-1Pricingdate:2010-1-1;annualcoupon=1Initialstructure2%3%4%forwardsspreads0.5%0.5%0.5%Pricingdate:2011-1-1;annualcoupon=1Carry-roll-structure3%4%0.5%0.5%2%3%0.5%0.5%1-11-193.0229+1.32569994.34856.18005.2577downspreadsstructurespreadsCarry-Roll-Down:2.3256Rate+1.8315changeSpreadstructurechangespreads2%1%3%1%-0.9223P&LComponents11101P=+++=93.02291+2.5%1+2.5%1+3.5%1+2.5%1+3.5%1+4.5%1101Pୡୟ୰୰୷ି୰୭୪୪ିୢ୭୵୬==94.3485=96.181+3.5%1+3.5%1+4.5%1101P୰ୟ୲ୣୡ୦ୟ୬ୣ=+1+2.5%11+2.5%1+3.5%101Pୱ୮୰ୣୟୢୡ୦ୟ୬ୣ=+=95.25771+3%1+3%1+4%Exercise1¾Thepriceofathree-yearzero-coupongovernmentbondis85.16.Thepriceofasimilarfour-yearbondis79.81.Whatistheone-yearimpliedforwardratefromyear3toyear4?A.5.4%B.5.5%C.5.8%D.6.7%¾¾Answer:D领取考前:xuebajun888s题唯一微信Exercise2¾Thefollowingdiscountfunctioncontainssemi-annualdiscountfactorsouttwoyears:d(0.5)=0.9970,d(1.0)=0.9911,d(1.5)=0.9809,d(2.0)0.9706.Whatistheimpliedeighteen-month(1.5year)spotrate(aka,.5yearrate)?=1A.0.600%B.1.176%C.1.290%D.1.505%¾Answer:CExercise3¾Anannuity$10everyyearfor100yearsandcurrentlycosts$100.TheYTMisclosestto:A.5%B.7%C.9%D.10%¾CorrectAnswer:DExercise4¾A$1,000bondcarriesacouponrate10%,couponsandhas13yearsremainingtoMarketratescurrently9.25%.Thepricethebondisclosestto:A.$586.60B.$1,036.03C.$1,055.41D.$1,056.05¾CorrectAnswer:DExercise5¾Abondportfoliomanagerinvests$20millioninabondissuedatparthatmaturesin30years,andwhichpromisestopayanannualinterestrateof9%.Theinterestispaidonceperandthepaymentsarereinvestedatanannualinterestrateof8%.Thefirstpaymentisoneyearfromtoday.Whatistheannualyieldonthisinvestment?A.8.185%B.8.285%C.8.385%D.8.415%¾¾Answer:C领取考前:xuebajun888s题唯一微信Bond12..ShiftsNon-ParallelShiftsParallelStructureShifts¾¾One-FactorAssumptionzTheonlysignificantassumptionmadeabouthowthetermstructurechangesisthatallratechangesdrivenbyonefactoThesimplestone-factormodelassumesthatallratemovebythesameamount.DurationAnalysiszYielddurationmeasuresthesensitivityapricetoitsyieldchange.9Plainbond:ķMacaulayDuration&ModifiedDuration&DollarDuration&DV01ĸConvexity9Embeddedoption:ķEffectiveduration&EffectiveconvexityParallelStructureShifts¾¾MacaulayDurationzperiodcashflowreturningweightedbydiscountedcashPVCF୲PMac.D=×t=(w୲×t)ExampleIfabondhasapresentUSD93.06withacashflowinoneyearprovidingapresentUSD5.45andacashflowintwoyearsprovidingapresentUSD87.60,theMacaulaydurationwouldbe:5.4587.60×1+×2=1.941493.0693.06zzForaplainbond,theMacaulaydurationislessthanorequaltoitsForazerocouponbond,theMacaulaydurationequalstoitsParallelStructureShifts¾ModifiedDurationandDollarDurationz==1+z=×P×Pzz=.=×P=yParallelStructureShifts¾DV01zTheDV01istheabsolutevaluethepricechangeabondonepointchangeinyield.ȟꢀDV01=െȟDV01=MD×BondValue×0.0001¾Examplezz9Macaulayduration=1.9414Bondvalue=93.06Thisindicatesthata1bpschangeinthecontinuouslycompoundedyieldtogiverisetoapricechangeof:െ1.9414×93.06×0.0001=െ0.01807ParallelStructureShifts¾z9aaAAaBBF×F=aaaaz1===zzParallelStructureShifts¾Price-YieldrelationshipParallelStructureShifts¾¾LimitationsDurationzDurationprovidesagoodapproximationwhensmallparallelshiftintheinterestratetermstructure.itwillprovideapoorapproximationifnon-parallelshiftorthechangeis.ConvexityzAmeasurethenon-linearrelationship.Convexity=(w୲×tଶ)zWhenratesexpressedwithcompoundingmtimesperyear:ConvexityModifiedConvexity=y1+mRiskMetrics¾¾¾PriceApproximation1Py+ȟy=Py+fᇱyȟy+fᇱᇱyȟyଶ+ڮ2DollarDollarDurationConvexityzzzTheactual,exactprice:P=f(y+ȟy)Thedurationestimate:P=PെD×P×ȟyThedurationandconvexityestimate:1P=PെD×P×ȟy+×C×P×ȟy2ParallelStructureShiftsDurationandConvexityAnalysiszTheeffectparallelshiftsinterestratetermstructurecanbeaccuratebyaddingconvexityanalysistheanalysisduration.zIfCistheapproximatepricechangecanberefinedto:1ȟꢀ=െꢁꢀȟ+CPȟ2zThisapproximationallowsrelativelyparallelshiftstobeconsidered.ParallelStructureShiftsExampleConsidera10-yearzero-couponbondtradingatayield6%,semiannuallycompounding.Thepresentthebond:P=100/1+6%/2ଶ=55.368CalculationDurations,forazero-couponbond:zzzMacaulayduration=10yearsModifiedduration:MD=10/1+6%/2=9.708Dollarduration:DD=MD×P=9.708×55.368=537.553ParallelStructureShifts¾¾¾Example˄1˅canusethedurationtocalculatethebondpriceapproximatelywhentheyieldchanges,forexample,yieldgoesto7%6%TheexactpricebondisP=100/1+7%/2ଶ=50.257UsingdurationtoapproximateP=+fᇱyȟ=55.368െ537.553×1%=$49.993CalculateconvexityConvexity=141××21×20=98.9736%1+2Usingdurationandconvexitytoapproximate1P=55.368െ537.553×1%+×98.973×55.368×1%ଶ=50.2672ParallelStructureShiftsExample˄2˅Ifyieldgoes5%6%TheexactpricebondisP=100/1+5%/2ଶ=61.027UsingdurationtoapproximateP=+fᇱyȟ=55.368െ537.553×˄െ1%˅=$60.744Usingdurationandconvexitytoapproximate1P=55.368െ537.553×െ1%+×98.973×55.368×െ1%2=61.017ParallelStructureShiftsNegativeConvexityzAcallablebondgivestheissuertherighttoallorpartthebondbeforethespecifiedmaturitydate.zMostmortgagebondsnegativelyconvex,andcallablebondsusuallyexhibitnegativeconvexityatloweryields.1ParallelStructureShifts¾EffectiveDurationandEffectiveConvexityzInabond(withoutembeddedoptions)cantypicallyusemodifiedandeffectiveWhenthebondcontainsembeddedoptions,prefereffectiveduration:ȟꢀ/PPെPD=െ=ȟȟ999zP=initialobservedbondpriceȟ=changeinrequiredyield(indecimalform)Effectiveconvexity:anapproximatemeasureconvexityDିെDାȟP+ାെ2PȟyଶC==ParallelStructureShifts¾EffectiveDurationandEffectiveConvexityzExample:Supposethereisa10-yearbondwithanannualcouponof6%tradingatComputethebond’sdurationfora40basispointincreaseanddecreaseinyield,andcomputetheconvexityofthisbond.z9Answer领取考前:xuebajun888s题唯一微信Ifinterestratesriseby40basispointsN=10;PMT=6;FV=100;I/Y=6.4;CPT՜PV=െ97.11Ifinterestratesfallby40points9N=10;PMT=6;FV=100;I/Y=5.6;CPT՜PV=െ103103െ97.11D=C==7.36252×100×0.004103+97.11െ2×100=68.75100×0.004ଶParallelStructureShifts¾HedgingbasedonEffectiveDurationz9999zSupposeTheeffectivedurationaninvestmentis୴ThetheinvestmentisVThedurationabondisThethebondisPIfhedgeagainstsmallparallelshift,thenthepositioninthebondis:VDDP=ParallelStructureShifts¾¾¾HedgingbasedonEffectiveDurationandConvexityzcanusetwobondsbotheffectivedurationandeffectiveconvexityzero.Suppose999P,D,andCthevalue,duration,andconvexitythefirstbondP,D,andCthevalue,duration,andconvexitythesecondbondD,andCthevalue,duration,andconvexitythepositionthatistobehedged.zcanbothdurationandconvexitybychoosingଵandଶ:െVDെଵଵെଶDଶ=0VC+ଵଵ+ଶCଶ=0ParallelStructureShiftsPortfolioDurationandConvexityzInbothmodified(effective)durationandportfoliodurationandconvexityequaltheweightedsumindividual,durationsandconvexitieswhereeachweightisitsasapercentageportfoliozExampleCouponMaturityYTMDC567.00%.00%.00%54.00%22.97%4.4122.9215305.00%32.37%10.11132.545.50%44.66%14.00299.36D=(0.2297×4.41)+(0.3237×10.11)+(0.4466×14)=10.54C=(0.2297×22.92)+(0.3237×132.54)+(0.4466×299.36)=181.86ParallelStructureShiftsBulletversusBarbellPortfoliozAmanagerpurchase$100millionBatacost$100,000,000.Thepaymentssemi-annual.UsingAandCconstructaportfoliowiththesamecostandduration.ABC2465+େ=100,000,000େ00,000,000×4.7060+×14.9120=8.17551100,000,000=66m,େ=34mC୮୭୰୲୭୪୧୭=0.66×25.16+0.34×331.73=129.4֜Exercise1¾Abondhasacouponrateof6%perannum(thecouponsarepaidsemiannually)andasemiannuallycompoundedyieldof4%perannum.Thebondmaturesin18monthsandthenextcouponwillbepaid6monthsfromnow.Whichnumberbelowisclosesttothebond’sMacaulayduration?领取考前题唯一微:xuebajun888sA.1.023yearsB.1.457yearsC.1.500yearsD.2.915years¾CorrectAnswer:BExercise2¾Azero-couponbondwithamaturity10yearshasanannualeffectiveyield10%.Whatistheclosestforitsmodifiedduration?A.9B.10C.99D.100¾Answer:AExercise3¾Themodifieddurationis10.46abondwithacurrentprice$716.38.WhatistheDV01?A.$0.40B.$0.75C.$1.25D.Needinformation(yield,maturity)¾Answer:BExercise4¾Abondportfoliohasthefollowingcompositions:zzzPortfolioA:price$90,000,modifiedduration2.5,longpositionin8bonds;PortfolioB:price$110,000,modifiedduration3,shortpositionin6bonds;PortfolioC:price$120,000,modifiedduration3.3,longpositionin12bonds;Allinterestrates10%.Iftheratesriseby25bps,thenthebondportfoliowillA.Decreaseby$11,430B.Decreaseby$21,330C.Decreaseby$12,573D.Decreaseby$23,463CorrectAnswer:AExercise5¾A8%semiannualcouponbondwith$100currentlytradesat$78.75andhasaneffectiveduration9.8yearsandaconvexity130.Whatisthepricethebondiftheyieldfallsby150basispoints?A.$67.17B.$86.47C.$91.48D.$95.43¾CorrectAnswer:CExercise6¾Whichofthefollowingstatementsisalwayscorrect?A.Nomethodcanhedgeinterestraterisk.B.Single-factormodelassumemean-reversionbetweenoneshort-termandonelong-termrate.C.Single-factormodelsassumerisk-freesecuritieshavecreditexposure.D.Single-factormodelsassumethatallratechangesaredrivenbyone领取考前押题唯一微:xuebajun888s¾Answer:DNon-ParallelStructureShifts¾ModelingNon-ParallelStructureShiftszInpractice,theremanydifferenttypesnon-parallelshifts.Sometimesshort-termratesmovedownwhilelong-termmoveup,orviceversa.Occasionally,shortlong-terminterestratesmoveinonedirection,whilemedium-termratesmoveintheotherdirectionyNonparallelTNon-ParallelStructureShifts¾PrincipalComponentsAnalysiszAstatisticaltechniquecalledprincipalcomponentsanalysiscanbeusedtounderstandtermstructurechangesinhistoricaldata.Principalcomponentanalysiscananalyzetheeffectsofmultiplefactorsandestimatetheirrelativeimportanceindescribingmovementsinthetermstructure.zzThistechniquelooksatthedailychangesininterestratescorrespondingtovariousmaturitiesandidentifiesfactorsthathavethefollowingcharacteristics:领取考前题唯一微:xuebajun888sķThesefactorsuncorrelated;ĸDailychangesintermstructurelinearcombinationsthefactors;ĹThefirsttwoorthreefactorsaccountforthemajoritytheobserveddailymovements.Non-ParallelStructureShifts¾݂zz୧Non-ParallelStructureShifts¾Forourdata,thetotalvarianceis14.15ଶ+4.91ଶ+ڮ+0.68ଶ=235.77zzThefirstfactoraccountsfor84.9%(=14.15ଶ/235.77)Thefirsttwofactorsaccountfor:14.15ଶ+4.91ଶ=95.14%235.77zThefirstthreefactorsaccountfor97.66%thevariance.14.15ଶ+4.91ଶ+2.44ଶ=97.66%235.77Non-ParallelStructureShifts¾Key-RateExposurez9Key-RateShiftsAssumptionThecrucialassumptiontherateisthatallratescanbedeterminedasafunctionofarelativelysmallnumberofkeyrates.Afewratesalongtheterm-structurearepickedwhicharerepresentativeofthecurve.领取考前题唯一微:xuebajun888s99Therateagivenmaturityisaffectedsolelybyitsclosestkey-rate.Shiftsinthekey-ratesdeclinelinearly.1056Non-ParallelStructureShifts¾Key-RateExposurez99Key-RateShiftsMetricsRate’01s:whichistherateequivalentDV01.RateDuration:whichistherateequivalentdurations.ȟPȟy1PȟPȟyDV01୩ୣ୷=െ0.0001×D୩ୣ୷=െڄzExample:Calculate30-yearrate01andratedurationapplyingaonebasispointshift.=0.1033=41.129425.01254െ25.11584KeyRate01ଷ=െ0.0001×0.01%5.01254െ25.115842KeyRateDurationଷ=െ25.11584×0.01%Non-ParallelStructureShifts¾¾¾Example1SupposeaportfolioconsistsaUSD1millioninvestmentineachaone-and15-yearcouponbond.Thedecreaseintheforaone-basis-pointincreaseinthespotratesisasfollows:Decreaseinfora1bpsIncreaseinSpotRatesSpotRateMaturity135915PortfolioDecrease96.72270.26433.85677.93957.66Supposefive-yearandten-yearinterestrateselectedasratetobeusedinanalysis,then:6Non-ParallelStructureShiftsExample1ChangesinSpotRateforChangesinRateSpotRateMaturityRateShift1100350109150Five-year0.66670.3333000.20.801KR01sforPortfolioCalculationPartial01ଵ276.9096.72+(0.6667×270.26)KR01ଶ0.3333×270.26+433.85+(0.2×677.93)659.520.8×677.93+957.661,500.00KR01ଷNon-ParallelStructureShiftsExample2Supposethreedifferenthedginginstrumentsusedtohedgerisks.TheKR01sportfolioandhedginginstrumentsisshowninthefollowingtable:DataforHedgingUsingKR01sPortfolioHedgingInstruments1402636KR011KR012KR0132524767704448825024752+40xଵ+6xଶ+6xଷ=076+4xଵ+44xଶ+8xଷ=070+2xଵ+8xଶ+50xଷ=0xଵ=െ3,xଶ=െ8,xଷ=െ14Non-ParallelStructureShifts¾ForwardBucketShiftzEachforward01iscomputedbyshiftingtheforwardratesinthatbucketbyonebasispoint.Non-ParallelStructureShifts¾EstimatingPortfoliozzzRegulatorsBankstoconsidertendifferentKR01swhenanalyzingtherisktheirportfolios(including3-month,6-month,and30-yearspotrates).BanksneedalltheKR01szero,buttheyneeduseKR01exposureandstandarddeviationthetenratestoestimateriskmeasuressuchasorExpectedShortfall.Theformulaforthestandarddeviationthechangeintheportfolioinonedayis:ɐ=ɏ୧୨ɐ୧ɐ୨×KR01୧×KR01୨ɐ୧isthevolatilitythedailymovementinratei(measuredinbps)andɏ୧୨isthecorrelationbetweenthedailymovementsinrateiandj.Exercise¾Assumeyouownasecuritywitha2-yearrateexposure$4.78,andyouwouldtohedgeyourpositionwithasecuritythathasacorresponding2-yearrateexposure0.67per$100facevalue.Whatamountfacewouldbeusedhedgethe2-yearexposure?A.$478B.$239C.$713D.$670¾Answer:COption1.2.3.OtherAssetsOne-Step¾Risk-Neutralzdefinerisk-neutralworldasoneinvestorsdonotadjusttheirexpectedreturnbasedrisk,sotheexpectedreturnallassetsisrisk-freeinterestrate.zTherisk-neutralvaluationprinciplestatesthatifassumeinarisk-neutralworld,cangetafairpriceforaderivative.One-Step¾ExampleThestockpriceABCcompanyis$20Thestockwillgoup2ordown18threemonthsWhattheEuropeancallpricez2thisstockmonthsnow?SupposethestrikepriceisK=$21,continuouslycompoundedrisk-freerateis12%.Price=$22pOptionPrice=$1Price=$20OptionPricef1–pPrice=$18OptionPrice=$0One-Step¾Solution1zzzzzLong©stock,short1call.Inarisk-neutralworld:22©–1=18©©=0.25att0=20©–fatt1=22©–120×0.25െfe.ଵଶ×.ଶହ=22×0.25െ1zf=0.633¾Solution222P+181െP=20eP=0.6523f=1×p+0×1െpeି.ଵଶ×.ଶହ=0.633One-Step¾Generalizationupu=u–K,=0f1–pdd=d–K,zzLong©stocksandshort1calloptionhedgetherisk.Sȟെf୳=Sȟെf,eliminaterisksinbothcases.fെfୢSuെSdȟ=f=pf୳+1െpfୢeeെduെdp=u=ed=eMulti-Step¾EuropeanOptionsS0uufS0SfS0udfudfS0ddfeെduെdp=f=epଶf୳୳+2p1െpf୳ୢ+1െpଶfୢୢMulti-Step¾¾¾Example:EuropeanCallOptionwithUpandDownInformedbyAssetTimeRisklessYield5%2%$810$8000.520%udp1.10520.90480.5126$989.34$895.19732.92$810$810$$663.17Multi-StepExample:EuropeanCallOptionwithUpandDownInformedbyu=e=eଶ%×.ଶହ=1.1052d=0.9048e(୰ି୯)୲െduെdeെ0.90481.1052െ0.9048p===0.5126189.34100.66.0653.41050(189.34×0.5126+10×1െ0.5126)݁ି.ହ×.ଶହ=100.6610×0.5126+0×1െ0.5126݁ି.ହ×.ଶହ=5.06100.66×0.5126+5.06×1െ0.5126݁ି.ହ×.ଶହ=53.4Multi-StepAmericanOptions0ztheoptionateachnodeisnolessthantheintrinsicvalue.Sf0udf0Multi-Step¾Example:AmericanPutOptionwithpricejump+/-20%AssetTime50$52RisklessYield5%0%$2udp282$72$6040$4832$50$$Multi-Step¾Example:AmericanPutOptionwithpricejump+/-20%01.4147/05.09/249.4634/12200×0.6282+4×1െ0.6282eି.ହ×ଵ=1.4147×0.6282+20×1െ0.6282eି.ହ×ଵ=9.4634.4147×0.6282+12×1െ0.6282eି.ହ×ଵ=5.0941OtherAssets¾¾OptionsonwithDividendseെdp=Everythingelseabouttheisthesameasbefore.OptionsonIndicesuെdzzindexprovidesadividendyield.thevaluationshouldinvolvethemodificationasabove.¾¾OptionsonCurrenciesCurrencycanbeconsideredasanassetprovidingayield.OptionsonFutureszzItcostsnotingintoafuturescontractandcanacontractastockpayingadividendyieldTherefore,get:1െdp=uെdMulti-Step¾IncreasingtheNumberTimePeriodszAsthenumbertimestepsisincreased(sothatWbecomessmaller),thebinomialmodelmakesthesameassumptionsaboutstockpricebehaviorastheBlack-Scholes-Mertonmodel.WhenthebinomialisusedpriceaEuropeanoption,thepriceconvergestheBlack-Scholes-Mertonprice,asexpected,asthenumbertimestepsisincreased.Exercise1¾Astockcurrentlytradesat$10.theendthreemonths,thestockwilleitherbe$11or$9.Thecontinuouslycompoundedrisk-freerateinterestis3.5%perThea3-monthEuropeancalloptionwithastrikeprice$10isclosestto:A.$0.11B.$0.54C.$0.65D.$1.01¾Answer:BExercise2¾AtraderhasanAmericanputoptionwithstrikeprice$50.Theunderlyingassetisstockwithaspotprice$40.Usinganone-stepbinomialtoevaluatetheoption.Supposethestockpricewillgoupordownby$8in6month,therisk-freerateis6.2%,whatisthethisAmericanA.USD8.19B.USD8.45C.USD10.00D.USD10.32¾Answer:COptionModelAssumptions¾AssumptionszzThestockpricefollowstheprocesswithnjandIJconstant.notransactioncostsortaxes.Allsecuritiesperfectlydivisible.zzzzzTherenodividendsduringthelifethederivative.Therenorisklessarbitrageopportunities.Securitytradingiscontinuous.Therisk-freerateinterest,isconstantandthesameforallmaturities.Theoptionsbeingconsideredcannotbeexercised.PriceMovement¾LognormalAssumptionzzGeometricBrownianmotiondS୲=uSdt+ɐSdZLemma߲f߲f12߲ଶf߲fdft,S=+uS୲+ɐଶSଶdt+ɐS୲dZ୲߲t߲S߲Sଶ߲SzzAsthestockpricefollowsaGeometricBrownianMotion,ifdefineG=lnS,usinglemma,have:1dG=uെɐଶdt+ɐdZ2Avariablehasalognormaldistributionifthenaturallogarithmthevariableisnormallydistributed.WhiletheequationaboveshowsthatlnSisnormallydistributed.Thestockpriceislognormallydistributed.PricingFormulas¾¾B-SdifferentialequationV=eEmaxSെK,0ThePriceEuropeanOptionscall=SNଵെKeNdଶput=KeNെdଶെSNെଵɐଶ2lnS/K+r±Tଵ,ଶ=ɐTzzzNଵisthedeltaofcallNdଶistheprobabilityofcallexercise1െNdଶistheprobabilityofputexercisePricingFormulas¾ExamplezzzzzEuropeancalloptionpriceis$10,is$9.is20%.issixmonths.Risklessrateis5%.20%ଶ2ln10/9ln10/9+25%+×0.5×0.5ଵ==0.992=0.8510%×0.50%2+5%െ2dଶ=20%×0.5call=10N0.992െ9eି.ହ×.ହN0.851=1.35OtherAssets¾OptionsonwithDividendsc=SeNଵെKeNdଶp=KeNെdଶെSeNെଵlnS/K+rെq±ɐଶ/2Tଵ,ଶ=ɐT¾¾OptionsonCurrencieszBehavesastockpayingadividendyieldattheforeignrisk-freerate.OptionsonFutureszBehavesastockpayingadividendyie
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏省宿迁市泗洪县部分事业单位公开招聘笔试历年典型考题及考点剖析附带答案详解-1
- 2025至2031年中国流水号不干胶标签行业投资前景及策略咨询研究报告
- 2025至2031年中国水上式底阀管道弯头行业投资前景及策略咨询研究报告
- 老年精神科护理
- 精神科病房常用药物科普指南
- 护理专业大学教育体系
- 机器人工程师培训行业深度调研及发展项目商业计划书
- 2025至2031年中国复合玻璃钢保温护套行业投资前景及策略咨询研究报告
- 2025至2031年中国圣诞网灯行业投资前景及策略咨询研究报告
- 2025至2031年中国吹塑薄膜筒料行业投资前景及策略咨询研究报告
- 《数据分析与可视化综合实验》课件
- 2025年公牛插座市场调研报告
- 2024-2030全球旅行用便携式WiFi热点行业调研及趋势分析报告
- 第三单元 传承中华优 秀传统文化 课 件- 2024-2025学年七年级道德与法治下册 统编版
- 银行培训中心管理制度
- 抽动症护理查房
- 2025安全月培训课件
- 厂区内雨水排放管理制度
- 2023年上海市普通高中学业水平合格性考试物理试题(含答案)
- 2024年四川省资阳市中考物理试题【含答案、解析】
- 第5课 弘扬劳动精神、劳模精神、工匠精神 教案-中职高教版(2023)《职业道德与法治》
评论
0/150
提交评论