




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省金湖县2023年数学九年级第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.2.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.13.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A. B. C. D.4.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.135.若方程有两个不相等的实数根,则实数的值可能是()A.3 B.4 C.5 D.66.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是()A.3 B.6C.9 D.127.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm8.如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是()A.①② B.①③ C.①②③ D.①②③④9.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.10.在△ABC中,若|cosA.45° B.60° C.75° D.105°二、填空题(每小题3分,共24分)11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.12.如图,⊙O直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,若OM:OC=3:5,则弦AB的长为______.13.如图,RtΔABC绕直角顶点C顺时针旋转90°,得到ΔDEC,连接AD,若∠BAC=25°,则∠ADE=_________14.已知二次函数的图象经过原点,则的值为_______.15.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.16.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.17.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为______.18.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,点A(,3),B(,2),C(0,).(1)以y轴为对称轴,把△ABC沿y轴翻折,画出翻折后的△;(2)在(1)的基础上,①以点C为旋转中心,把△顺时针旋转90°,画出旋转后的△;②点的坐标为,在旋转过程中点经过的路径的长度为_____(结果保留π).20.(6分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.21.(6分)为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.(1)求月销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?22.(8分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.23.(8分)解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).24.(8分)在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.25.(10分)某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?26.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?
参考答案一、选择题(每小题3分,共30分)1、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.2、B【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选B.【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.3、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:
∵圆的半径为4,
∴OB=OA=OC=4,
又四边形OABC是菱形,
∴OB⊥AC,OD=OB=2,
在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=,∴S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=.4、A【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.5、A【分析】根据一元二次方程有两个实数根可得:△>0,列出不等式即可求出的取值范围,从而求出实数的可能值.【详解】解:由题可知:解出:各个选项中,只有A选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与△的关系是解决此题的关键.6、B【详解】设这个圆锥的底面半径为r,∵扇形的弧长==1π,∴2πr=1π,∴2r=1,即圆锥的底面直径为1.故选B.7、C【分析】连接OA,根据垂径定理,求出AD,根据勾股定理计算即可.【详解】连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选C.【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.8、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF;连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.9、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10、C【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得
cosA=12,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C二、填空题(每小题3分,共24分)11、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.12、1.【详解】解:连接OA,⊙O的直径CD=20,则⊙O的半径为10,即OA=OC=10,又∵OM:OC=3:5,∴OM=6,∵AB⊥CD,垂足为M,∴AM=BM,在Rt△AOM中,AM==8,∴AB=2AM=2×8=1,故答案为:1.13、20°【分析】由题意根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,根据∠ADE=∠CED-∠CAD.【详解】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案为:20°.【点睛】本题考查旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确掌握理解图示是解题的关键.14、2;【分析】本题中已知了二次函数经过原点(1,1),因此二次函数与y轴交点的纵坐标为1,即m(m-2)=1,由此可求出m的值,要注意二次项系数m不能为1.【详解】根据题意得:m(m−2)=1,∴m=1或m=2,∵二次函数的二次项系数不为零,所以m=2.故填2.【点睛】本题考查二次函数图象上点的坐标特征,需理解二次函数与y轴的交点的纵坐标即为常数项的值.15、3或【解析】分两种情况:与直线CD相切、与直线AD相切,分别画出图形进行求解即可得.【详解】如图1中,当与直线CD相切时,设,在中,,,,,;如图2中当与直线AD相切时,设切点为K,连接PK,则,四边形PKDC是矩形,,,,在中,,综上所述,BP的长为3或.【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键.16、或1【分析】分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=110°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图1所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或1;故答案为:或1.【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.17、6【分析】如图,过点F作交OA于点G,由可得OA、BF与OG的关系,设,则,结合可得点B的坐标,将点E、点F代入中即可求出k值.【详解】解:如图,过点F作交OA于点G,则设,则,即双曲线过点,点化简得,即解得,即.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.18、.【详解】连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案为.考点:旋转的性质.三、解答题(共66分)19、(1)画图见解析;(2)①画图见解析;②(4,-2),.【分析】(1)根据轴称图形的性质作出图形即可;(2)①根据旋转的性质作出图形即可;②在坐标系中直接读取数值即可,第二空根据弧长计算公式进行计算即可.【详解】解:(1)如图所示:△为所求;(2)①如图所示,△为所求;②由图可知点的坐标为(4,-2);∵==5在旋转过程中点经过的路径的长度为:=.故答案为:(4,-2),.【点睛】本题考查了轴对称和旋转作图,以及弧长计算公式的应用.掌握弧长计算公式是解题的关键.20、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME=∠CNE,∠MDE=∠ECN,可证明△MDE≌△NCE(AAS);(2)过点M作MG⊥BN于点G,由等腰三角形的性质得出BG=BN=BN,由中位线定理得出EF=BN,则可得出结论.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E为CD的中点,∴DE=CE,∴△MDE≌△NCE(AAS);(2)证明:过点M作MG⊥BN于点G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=BN,∴AM=EF.【点睛】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.21、(1)与的函数关系式为;(2)该设备的销售单价应是27万元.【分析】(1)根据图像上点坐标,代入,用待定系数法求出即可.(2)根据总利润=单个利润销售量列出方程即可.【详解】解:(1)设与的函数关系式为,依题意,得解得所以与的函数关系式为.(2)依题知.整理方程,得.解得.∵此设备的销售单价不得高于35万元,∴(舍),所以.答:该设备的销售单价应是27万元.【点睛】本题考查了一次函数以及一元二次方程的应用.22、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)【解析】(1)利用待定系数法转化为解方程组即可.(2)如图1中,分两种情形讨论①当CP=CD时,②当DP=DC时,分别求出点P坐标即可.(3)如图2中,作CM⊥EF于M,设则(0≤a≤4),根据S四边形CDBF=S△BCD+S△CEF+S△BEF构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由题意解得∴二次函数的解析式为(2)存在.如图1中,∵C(0,2),∴CD=当CP=CD时,当DP=DC时,综上所述,满足条件的点P坐标为或或(3)如图2中,作CM⊥EF于M,∵B(4,0),C(0,2),∴直线BC的解析式为设∴(0≤a≤4),∵S四边形CDBF=S△BCD+S△CEF+S△BEF,∴a=2时,四边形CDBF的面积最大,最大值为,∴E(2,1).【点睛】本题考查二次函数综合题、一次函数的应用、待定系数法,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,属于中考压轴题.23、(1)x=2±;(2)x=或x=.【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2±.(2)∵(2x﹣1)2=4(2x﹣1),∴(2x﹣1﹣4)(2x﹣1)=0,∴x=或x=.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.24、(1)(﹣1,4);(2)①;②Q(﹣,).【分析】(1)将点A坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q作y轴的平行线交AC于点N,先求出直线AC的解析式,点Q(x,﹣x2﹣2x+3),则点N(x,x+3),则△QAC的面积S=×QN×OA=﹣x2﹣x,然后根据二次函数的性质即可求解;②tan∠OCB==,设HM=BM=x,则CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,则点H(0,),同理可得:直线BH(Q)的表达式为:y=-x+,即可求解.【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q作y轴的平行线交AC于点N,如图1,设直线AC的解析式为y=kx+b,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,,解得,∴直线AC的表达式为:y=x+3,设点Q(x,﹣x2﹣2x+3),则点N(x,x+3),△QAC的面积S=QN×OA=(﹣x2﹣2x+3﹣x﹣3)×3=﹣x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论