版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港灌云县联考2023-2024学年数学九上期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.对于反比例函数,下列说法中不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.随的增大而减小D.当时,随的增大而减小2.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥33.若点,是函数上两点,则当时,函数值为()A.2 B.3 C.5 D.104.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.5.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G为DF的中点.若BE=1,AG=3,则AB的长是()A. B.2 C. D.6.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a27.已知一扇形的圆心角为,半径为,则以此扇形为侧面的圆锥的底面圆的周长为()A. B. C. D.8.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.9.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1 B.y=5(x+2)2+1 C.y=5(x﹣2)2﹣1 D.y=5(x+2)2﹣110.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.11.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<212.的倒数是()A.1 B.2 C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.14.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为___________________15.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.16.如图,四边形ABCD是矩形,,,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.17.要使二次根式有意义,则的取值范围是________.18.抛物线的顶点坐标是____________三、解答题(共78分)19.(8分)中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降。中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如下不完整统计图和统计表.已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A,今年落在24<t≤48内的“声呐鲟”比去年多1尾,今年落在48<t≤72内的数据分别为49,60,68,68,1.去年20尾“声呐鲟”到达监测点A所用时间t(h)的扇形统计图今年20尾“声呐鲟”到达监测点A所用时间t(h)的频数分布直方图关于“声呐鲟”到达监测点A所用时间t(h)的统计表平均数中位数众数方差去年64.2687315.6今年56.2a68629.7(1)请补全频数分布直方图,并根据以上信息填空:a=;(2)中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;(3)去年和今年该放流点共放流1300尾中华鲟,其中“声呐鲟”共有50尾,请估计今年和去年在放流72小时内共有多少尾中华鲟通过监测站A.20.(8分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.(1)求证:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;(3)如果∠CAD=60°,DC=DE,求证:AE=AF.21.(8分)如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点(1)求b,k的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线没有交点时,求m的取值范围.22.(10分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.23.(10分)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为110m.(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了110m木栏,且围成的矩形菜园而积为1000m1.如图1,求所利用旧墙AD的长;(1)已知0<a<60,且空地足够大,如图1.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(10分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.(1)求二次函数解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)已知,求的值.26.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:.求作:菱形,使菱形的顶点落在边上.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,由此进行判断.【详解】A、把点(-2,-1)代入反比例函数y=得-1=-1,本选项正确;
B、∵k=2>0,∴图象在第一、三象限,本选项正确;
C、∵k=2>0,∴图象在第一、三象限内y随x的增大而减小,本选项不正确;
D、当x<0时,y随x的增大而减小,本选项正确.
故选C.【点睛】考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.2、A【解析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.3、B【分析】根据点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,可求得x=x1+x2=2,把x=2代入函数关系式即可求解.【详解】∵点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,对称轴为直线x=1,∴x1+x2=2×1=2,∴x=2,∴把x=2代入函数关系式得y=22﹣2×2+1=1.故选:B.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质.求出x1+x2的值是解答本题的关键.4、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5、B【分析】根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,进而得到得∠ADG=∠DAG,再结合两直线平行,内错角相等可得∠ADG=∠CED,再根据三角形外角定理∠AGE=2∠ADG,从而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式计算即可得解.【详解】解:∵四边形ABCD是矩形,点G是DF的中点,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故选:B.【点睛】本题考查了矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理的应用,求出AE=AG是解题的关键.6、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质.图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:.故选A.7、A【分析】利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长.【详解】解:扇形的弧长=,以此扇形为侧面的圆锥的底面圆的周长为.故选:A.【点睛】本题考查了弧长的计算:.8、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.9、A【解析】试题解析:将抛物线向右平移2个单位,再向上平移1个单位,得到的抛物线的解析式是故选A.点睛:二次函数图像的平移规律:左加右减,上加下减.10、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.11、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.12、B【分析】根据特殊角的三角函数值即可求解.【详解】=故的倒数是2,故选B.【点睛】此题主要考查倒数,解题的关键是熟知特殊角的三角函数值.二、填空题(每题4分,共24分)13、2【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行线的性质和三角函数定义求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案为:2.【点睛】本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.14、m【分析】根据余弦的定义计算,得到答案.【详解】在Rt△ABC中,cosA=,∴AB=,故答案为:m.【点睛】本题考查了三角函数的问题,掌握三角函数的定义以及应用是解题的关键.15、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.16、.【分析】根据题意可以求得和的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与的面积之差的和,本题得以解决.【详解】解:连接AE,∵,,,∴,∴,∴,,∴,∴阴影部分的面积是:,故答案为.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17、x≥1【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18、【分析】根据顶点式即可得到顶点坐标.【详解】解:∵,∴抛物线的顶点坐标为(2,2),
故答案为(2,2).【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键.三、解答题(共78分)19、(1)2;(2)见详解;(3)1560【分析】(1)先求出去年落在48<t≤72内的数据个数,从而根据“今年落在24<t≤48内的“声呐鲟”比去年多1尾”得到今年落在48<t≤72内的数据个数,继而根据各时间段的数据和为20求出24<t≤48内的数据个数,从而补全图形,最后根据中位数的概念求解可得;(2)从平均数上看去年“声呐鲟”到达下游监测点的平均时间为2.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,答案不唯一,合理即可;(3)用总数量乘以放流72小时内通过监测站A的对应的百分比求出去年、今年的数量,求和即可得.【详解】解:(1)去年落在48<t≤72内的数据有20×(个),∴今年落在48<t≤72内的数据为5,则今年24<t≤48内的“声呐鲟”数量为20-(5+5+7)=3,补全图形如下:∵今年“声呐鲟”到达下游监测点时间的第10、11个数据为60、68,∴a=,故答案为:2.(2)选择平均数,由表可知,去年“声呐鲟”到达下游监测点的平均时间为2.2小时,而今年“声呐鲟”到达下游监测点的平均时间为56.2小时,缩短了8小时,所以今年“声呐鲟”从长江到海洋的适应情况更好(答案不唯一,合理即可).(3)去年和今年在放流72小时内中华鲟通过监测站A的数量为1300×(1-45%)+1300×=15+845=1560(尾).【点睛】此题考查了频数分布直方图、条形统计图,平均数,中位数,众数,以及用样本估计总体,弄清题意是解本题的关键.20、(1)见解析;(2);(3)见解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.【详解】(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)证明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四边形ABCD内接于圆,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【点睛】本题是圆的综合题,考查了圆内接四边形的性质,圆周角定理,相似三角形的判定与性质,等腰三角形的判定与性质,角平分线的性质,三角形的内角和定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.21、(2)b=5,k=4;(2);(3)2<m<2.【分析】(2)把B(4,2)分别代入y=﹣x+b和y=,即可得到b,k的值;(2)根据反比例函数的性质,即可得到函数值y的取值范围;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣26,当直线与双曲线只有一个交点时,根据△=0,可得m的值.【详解】解:(2)∵直线y=﹣x+b过点B(4,2),∴2=﹣4+b,解得b=5,∵反比例函数y=的图象过点B(4,2),∴k=4;(2)∵k=4>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,≤y≤2;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,设直线y=﹣x+5﹣m与双曲线y=只有一个交点,令﹣x+5﹣m=,整理得x2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣26=0,解得m=2或2.∴直线与双曲线没有交点时,2<m<2.【点睛】本题主要考查了反比例函数与一次函数交点问题,一次函数图象与几何变换以及一元二次方程根与系数的关系的运用,解题时注意:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22、(1)证明见解析;(2)①30°;②22.5°.【解析】分析:(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.详解:(1)证明:连接OC,如图,.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.23、(1)旧墙AD的长为10米;(1)当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为(60﹣)平方米.【分析】(1)按题意设出AD=x米,用x表示AB,再根据面积列出方程解答;(1)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S与菜园边长之间的数量关系.【详解】解:(1)设AD=x米,则AB=,依题意得,=1000,解得x1=100,x1=10,∵a=30,且x≤a,∴x=100舍去,∴利用旧墙AD的长为10米,故答案为10米;(1)设AD=x米,矩形ABCD的面积为S平方米,①如果按图1方案围成矩形菜园,依题意得,S=,∵0<a<60,∴x<a<60时,S随x的增大而增大,当x=a时,S最大为;②如按图1方案围成矩形菜园,依题意得,S=,当a<时,即0<a<40时,则x=时,S最大为,当,即40≤a<60时,S随x的增大而减小,∴x=a时,S最大=,综合①②,当0<a<40时,,此时,按图1方案围成矩形菜园面积最大,最大面积为平方米,当40≤a<60时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为平方米.【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)【分析】(1)利用待定系数法求出A、B、C的坐标,然后把B点坐标代入,求出a的值,并化简二次函数式即可;(2)设点M的坐标为(m,),则点N的坐标为(2-m),可得,GM=,利用矩形MNHG的周长=2MN+2GM,化简可得,即当时,C有最大值,最大值为,(3)分三种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 花岗岩供应商合同样本
- 解除购房合同的程序指南
- 砖块采购合同范例
- 苗木购销合同范本详尽文件
- 纸箱采购合同范本
- 信用社个人借款合同范本
- 蔬菜采购合同范本在线编辑
- 研究劳务分包合同的主体责任
- 展会服务合同范本电子版
- 商用房屋买卖合同签订要点
- 2024新苏教版一年级数学册第三单元第1课《图形的初步认识》课件
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 综合实践活动课《早餐与健康》优质课件
- 《中华民族共同体概论》考试复习题库(含答案)
- 菲迪克条款中文最新版
- 华南理工大学电力电子技术课程设计报告
- 四分制验布标准.xls
- 1639.18山东省重点工业产品用水定额第18部分:金属矿采选业重点工业产品
- 习题参考答案
- 现在进行时和过去进行时中考专项复习.ppt
- 列管式冷却器GLC型冷却器尺寸表
评论
0/150
提交评论