版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市启东市东安中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已点A(﹣1,y1),B(2,y2)都在反比例函数y=的图象上,并且y1<y2,那么k的取值范围是()A.k>0 B.k>1 C.k<1 D.k≠12.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A. B. C. D.3.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为()A.﹣4 B.﹣3 C.﹣2 D.﹣14.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转5.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上6.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断7.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位8.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.9.关于抛物线y=-3(x+1)2﹣2,下列说法正确的是()A.开口方向向上 B.顶点坐标是(1,2)C.当x<-1时,y随x的增大而增大 D.对称轴是直线x=110.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A,B的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根据所测数据求得A,B两树距离的有()A.1组 B.2组 C.3组 D.4组11.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110° B.140° C.35° D.130°12.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A.10m B.10m C.15m D.5m二、填空题(每题4分,共24分)13.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于.14.抛物线的对称轴为__________.15.一元二次方程的一个根为,另一个根为_____.16.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.17.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.18.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.三、解答题(共78分)19.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:本次调查随机抽取了____名学生:表中;补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人20.(8分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)21.(8分)解方程:-2=3(-x).22.(10分)某校举行田径运动会,学校准备了某种气球,这些全球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示:(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?23.(10分)如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,BC=a,①求的弧长;②求的值.24.(10分)如图,的三个顶点在平面直角坐标系中正方形的格点上.(1)求的值;(2)点在反比例函数的图象上,求的值,画出反比例函数在第一象限内的图象.25.(12分)解方程:.26.如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠COA.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.3、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解.【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(-1,0).故横坐标为-1,故选D考点:二次函数的性质4、D【分析】根据事件发生的可能性大小及必然事件的定义即可作出判断.【详解】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定会发生的事件.不可能事件是指在一定条件下,一定不会发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.7、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.8、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.9、C【分析】根据抛物线的解析式得出抛物线的性质,从而判断各选项.【详解】解:∵抛物线y=-3(x+1)2﹣2,
∴顶点坐标是(-1,-2),对称轴是直线x=-1,根据a=-3<0,得出开口向下,当x<-1时,y随x的增大而增大,
∴A、B、D说法错误;
C说法正确.
故选:C.【点睛】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.10、C【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB的度数和AC的长,∴利用∠ACB的正切可求出AB的长,故①能求得A,B两树距离,∵AB//EF,∴△ADB∽△EDF,∴,故②能求得A,B两树距离,设AC=x,∴AD=CD+x,AB=,AB=;∵已知CD,∠ACB,∠ADB,∴可求出x,然后可得出AB,故③能求得A,B两树距离,已知∠F,∠ADB,FB不能求得A,B两树距离,故④求得A,B两树距离,综上所述:求得A,B两树距离的有①②③,共3个,故选:C.【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.11、B【解析】根据圆周角定理可得∠ADC=2∠ABC=140°,故选B.12、A【解析】试题分析:河堤横断面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故选A.考点:解直角三角形二、填空题(每题4分,共24分)13、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.第n个等边三角形的周长等于.14、【分析】根据抛物线的解析式利用二次函数的性质,即可找出抛物线的对称轴,此题得解.【详解】解:∵抛物线的解析式为,
∴抛物线的对称轴为直线x=故答案为:.【点睛】本题考查二次函数的性质,解题的关键是明确抛物线的对称轴是直线x=.15、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,∴或,解得:;,∴一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.16、【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案为.【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.17、【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴===,∴的长等于⊙O周长的四分之一,∵⊙O的半径为6,∴⊙O的周长==,∴的长等于,故答案为:.【点睛】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.18、.【解析】根据一元二次方程根与系数的关系即可得出答案.【详解】解:设方程的另一根为x1,又∵x2=2,∴2x1=3,解得x1=,故答案是:.【点睛】本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.三、解答题(共78分)19、(1)50,20,0.12;(2)详见解析;(3)1.【分析】(1)根据总数×频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数×达到“优秀"和“良好”等级的学生的百分比,即可得到答案.【详解】本次调查随机抽取了名学生,.故答案为:;补全条形统计图如图所示:(人),答:该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有1多少人.【点睛】本题主要考查频数统计表和条形统计图,掌握统计表和条形统计图的特征,是解题的关键.20、米【分析】设AP=NP=x,在Rt△APM中可以求出MP=x,在Rt△BPM中,∠MBP=30°,求得x,利用MN=MP-NP即可求得答案.【详解】解:∵在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=x,在Rt△BPM中,tan∠MBP=,∵∠MBP=30°,AB=5,∴=,∴x=,∴MN=MP-NP=x-x=.答:广告牌的宽MN的长为米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.21、【分析】去括号化简,利用直接开平方法可得x的值.【详解】解:化简得解得所以【点睛】本题考查了二元一次方程,其解法有直接开平方法、公式法、配方法、,根据二元一次方程的特点选择合适的解法是解题的关键.22、(1);(2)至少是0.4.【分析】(1)设表达式为,取点A(0.5,120)代入解得k值即可.(2)令y=150,代入表达式解得x的值,则由图可知,小于该x的值时是安全的.【详解】(1)设表达式为,代入点A(0.5,120),解得:k=60.则表达式为:(2)把y=150代入,解得x=0.4则当气体至少为0.4时才是安全的.【点睛】本题考查了反比例函数的实际应用,解题关键在于理解体积和气压的关系,气压越大体积越小.23、(1)见解析;(2)①πa;②=1.【分析】(1)由切线的性质可得∠ACB=∠ODB=90°,由平行线的性质可得OM⊥CF,由垂径定理可得结论;(2)①由题意可证△BCD是等边三角形,可得∠B=60°,由直角三角形的性质可得AB=2a,AC=a,AD=a,通过证明△ADO∽△ACB,可得,可求DO的长,由弧长公式可求解;②由直角三角形的性质可求AO=a,可得AE的长,即可求解.【详解】证明:(1)∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴∠ACB=∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,且OM过圆心O,∴点M是CF的中点;(2)①连接CD,DF,OF,∵⊙O与△ABC的边BC,AB分别相切于C,D两点,∴BD=BC,∵E是的中点,∴,∴∠DCE=∠FCE,∵AB∥CF,∴∠A=∠ECF=∠ACD,∴AD=CD,∵∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,且BD=BC,∴BD=BC=CD,∴△BCD是等边三角形,∴∠B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教导主任终工作总结简短
- 浙江省温州市龙湾区瑞安等多校2024-2025学年九年级上学期12月期末联考英语试题
- 甘肃省定西市渭源县2024-2025学年七年级上学期11月月考生物学试题(含答案)
- 高一 人教版必修二 英语 第三单元《Lesson 2 Reading and Thinking (1) 》课件
- 2016年现实热点融入中考历史复习的攻略
- 高三政治一轮复习备课资料-第四部分 生活与哲学
- 高一 统编版 历史(上)第四单元《第14课 清朝前中期的鼎盛与危机》课件
- 高一上册部编版 语文必修上 第四单元《家乡文化生活现状调查2》课件
- 高一 粤教版 物理 第三单元《力的合成》课件
- 《有相伴滋味长》课件
- 生命不是游戏拒绝死亡挑战主题班会
- 大数据开发工程师招聘笔试题及解答(某世界500强集团)2025年
- 思想道德与法治课件:第五章 第二节 吸收借鉴优秀道德成果
- 经纬度距离计算小工具-Distance_Formula
- ISO9001-2015培训教材(共166页).ppt
- 嘉陵江上-[原调-D]-钢琴伴奏正谱钢琴伴奏正谱高考声乐伴奏谱钢琴谱五线谱谱
- 并网前单位工程调试报告
- 校长学校跑操比赛总结大会上讲话.doc
- 一线员工技能等级评定方案
- 论直流电动机换向器打火原因分析及处理
- 浅谈压减三金的施工企业中的重要性
评论
0/150
提交评论