版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.3简单的轴对称图形第三课时等腰三角形完成课本“想一想”,请问发现了什么?得到什么结论?(1)等边三角形是轴对称图形.(2)等边三角形每个角的平分线和这个角的对边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴.等边三角形共有三条对称轴.(3)等边三角形的各角都相等,都等于60°.学习目标12经历剪纸、折纸等
活动,进一步认识等腰三角形,了解等腰三角形是
轴对称图形.
能够探索、归纳、验证等腰三角形的性质,并学会应用等腰三角形的性质.情境导入观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?情境导入(4)∠1与∠2有什么关系?∠3与∠4呢?探究点一:等腰三角形的性质活动探究有两条边相等的三角形叫等腰三角形((顶角底角底角腰腰底边)活动探究生活中的等腰三角形活动探究1.等腰三角形是轴对称图形吗?找出对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在直线呢?4.沿对称轴对折,你能发现等腰三角形的哪些特征?说说你的理由.思考:活动探究拿出你的等腰三角形纸片,折折看,你能发现什么现象?等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?小组合作交流活动探究(1)等腰三角形是轴对称图形.(2)∠B=∠C(3)∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5)BD=CD,AD为底边上的中线.ABCD现象:活动探究ABCD现象(3)、(4)、(5)能用一句话归纳出来吗?现象(2)能用一句话归纳出来吗?等腰三角形的两个底角相等等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”)归纳:活动探究在ΔABC中∵AD是角平分线,∴∠BAD=∠CAD.在ΔABD和ΔACD中,∵AB=AC,∠BAD=∠CAD,AD=AD∴ΔABD≌ΔACD∴BD=CD,∠ADB=∠ADC=90˚∴AD是ΔABC的角平分线、底边上的中线、底边上的高.三线合一吗?ABCD活动探究等腰三角形的性质
1.等腰三角形是轴对称图形.3.等腰三角形的两个底角相等.2.等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.
变式1.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。例1.如图,在等腰三角形ABC中,AD、BE分别是底边BC和腰AC上的高线,DA、BE的延长线交于点P.若∠BAC=110°,求∠P的度数。活动探究探究点二:等边三角形的性质三边都相等的三角形是等边三角形也叫正三角形(1)等边三角形是轴对称图形吗?找出对称轴(2)你能发现它的哪些特征?折叠一下试试!想一想活动探究等边三角形的性质:1.等边三角形是轴对称图形.2.等边三角形每个角的平分线和这个角的对边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴.等边三角形共有三条对称轴.3.等边三角形的各边都相等,各角都相等、都等于60°典例剖析例2
.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.
解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°
变式3.如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?
1、等腰三角形的顶角是36度,则底角是_____________.2、若等腰三角形的两边长分别是3m和6cm,则其周长是____________.3.下列命题中:(1)等腰三角形的两角相等;(2)等腰三角形的顶角平分线必平分底边;(3)等腰三角形一边上的中线也是这边上的高线;(4)等腰三角形底边上的高线平分顶角.其中正确的有()A.(1)(3)B.(2)(4)
C.(1)(2)(4)D.(2)(3)(4)15B72°4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室麻醉师培训课件
- 《上皮组织医学医药》课件
- 《博物馆新》课件
- 公务员考试经验分享培训课件
- 第三方信息安全风险评估
- 《客户沟通技巧培训》课件
- 1 北京的春节 公开课一等奖创新教学设计
- 14我要的是葫芦 公开课一等奖创新教学设计
- 综合实践活动校园小主人
- 联通双11活动策划方案
- 初中英语定语从句专项训练
- 井眼净化技术
- 桥梁工程—梁-拱组合结构桥梁施工工艺
- 单区长杨凌现代农业研学旅行推介词定稿426
- 事故调查笔录模板(共5页)
- 工程总承包EPC实施方案最新版精编版
- 石油套管接箍加工工艺(共25页)
- 表8----项目管理班子配备情况辅助说明资料
- 一般纳税人申报表模板
- 浅谈如何做好博物馆安全保卫工作
- 咽喉炎PPT精选课件
评论
0/150
提交评论