




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CONFIDENCE
INAI
APlaybookbyCapgeminiGenerativeAILab
2024
SUCCESSFUL,CONFIDENT
ADOPTIONOFAIRELIES
NOTJUSTONCREATING
AITHATWORKS,BUTON
CREATINGAITHATWORKS
RELIABLY,AITHAT’S
ALIGNEDTOHUMAN
EXPECTATIONS,ANDAI
THATWORKSINPEOPLE’S
BESTINTERESTS.
2GenAILab2024
3
TABLEOF
CONTENTS
4GenAILab2024
AITHATWORKS
ProvenAccuracy08
AITHATWORKSRELIABLY
Robustness
10
Dependability
12
Stability
14
AITHAT’SALIGNEDTOHUMANEXPECTATIONS
Sensibility
16
Humility
18
FailsGracefully/ExtrapolatesSensibly
20
Explainability
22
AITHATWORKSINPEOPLE’SBESTINTERESTS
Fairness24
Sustainability26
Privacy28
MARKROBERTS
DeputyHeadGenerativeAILab
Editorinchief
ROBERTENGELS
HeadGenerativeAILab
Editorinchief
AI:Beinggoodwastheeasybit.Nowweneedtobeuseful
Artificialintelligence(AI)issuddenlyeverywhere.Powerfulcontent-generationservicesthatmighthavebeenviewedasbeingfromtherealmofsciencefictionjust12monthsagoarenowabigpartofconversationfromtheboardroomtotheschoolplayground.
Onehugefactorinthisupswingininterestistheriseof
GenerativeAI.Duringthepast12months,theemergenceofhigh-profileGenerativeAIserviceshaspushedAItothefrontpages.WhereAIwasonceperceivedasanicheareaoftechnology,it’snowbeingusedbyallkindsofpeopleforallkindsofuses,whetherit’saskingquestions,writingtext,orgeneratingphotosandcode.
However,don’tconfusetherapidriseofGenerativeAIwitharevolution.WhileaneffectiveuserinterfacelikeChatGPTdemocratizesaccesstopowerfullargelanguagemodels,
themovetowardsAI-poweredserviceswashappening
anyway.Today’sinterestinGenerativeAIissimplythevisiblemanifestationofabehind-the-scenesevolutionthat’sbeenmanyyearsinthemaking.
What’smore,thosedecadesofexperiencegiveusa
proveninsightintothecriticalsuccessfactorsthatmustbeconsideredifwearetoturnaninterestinall-thingsAIintosomethingthathasgenuinecommercialvalue.
Understandingthe
scaleofinvestment
Aswellasthehigh-profilegenerativeservicesthatdominatethenewsagenda,there’sdiversearrayofotherAIproductsandservicesthatarebeingannounced,launchedand
marketedeveryday.ResearcherIDCreportsthatglobal
spendingonAI,includingsoftware,hardware,andservices,will
reach$154billionin2023
,anincreaseof26.9%ontheamountspentduring2022.
ThetechanalystsaysthecontinuedinvestmentinAIwill
meanspendingsurpasses$300billionin2026.Thiscashisalreadyfundingabroadrangeofproof-of-conceptprojects.Whetherthey’reusingAItoimprovecustomerservices,
solvehardscienceandengineeringproblemsoridentifyfraudulenttransactions,companiesareinvestingbillionsofdollarsinrelativelynewtechnologytotryandgain
competitiveadvantageovertheirrivals.
Fromtheoutsidelookingin,thisinvestmentinAIlooks
likeagreatsuccessstory.Thefundingwillcreateproducts
andservicesthathelpshapethefutureoftechnology
andbusiness.Yetthere’sadownside,too–likeallnew
technologywaves,notalloftheseinvestmentswillpayoff.WeseethiseffectacrossCapgemini’sbroadcustomerbase.ManyAIprojects,evenonesthatareapparentlysuccessful,
donotescapetheproof-of-conceptstages.VarioussurveysinrecentyearsputthefailurerateofAIprojectsashighas80%.Whatemergesisacontradiction:whilemanyorganizationsbelieveabiginvestmentinAIwillbecommerciallypositive,largenumbersoftheseprojectsarenotnecessarilypayingoff.So,howcanwereconcilethesetwoverydifferentviewsandcreatecommerciallyusefulAIinitiatives?
5
Changinghowwe
measuresuccess
Thekeychallengeweneedtoovercomeisthatwe’re
allmeasuringthesuccessofAIprojectsinthewrong
way.Whetherit’speoplewhoareusingAI,specialists
developingtools,orthemedia,analystsandinvestors,
we’realllockedintoacollectivedelusionthataccuracyistheonlythingthatmatters.
Successistoooftenmeasuredintermsofhavinghigh
accuracyonnarrowbenchmarktests,orbeingimpressiveorentertaining,whileothercrucialsuccessfactors–areignoredbecausethey’renotwell-understood,excitingorheadline-grabbing.
WhenanAIsystemdoessomethingcorrectly,whether
that’sasimpleclassificationperformedbyatraditional
machine-learningsystem,oraGenerativeAItoolansweringaquestioncorrectly,weattachalotofsignificancetothisaccuracy.Infact,weoftenbaseourentireopinionofthe
systemonthissinglemeasureofaccuracy.
Accuracyissoreveredthateverydayweseebreathlessheadlinesdeclaringthatnewsystemshaveachieved
highlevelsofaccuracyonaparticularproblem.Figuresof“90%accurate”or99%or99.9%arethrownaround–
themore9sthebetter,suchistheobsessionwithhigh
levelsofaccuracy.Toexpertsinthefield,however,this
obsessionwithaccuracyisbothnaïveandunhelpful,
asitdrawsattentionawayfromthefactorsthatreally
matterforlong-termsuccess.Inthemajorityofreal-
worlddeployments,howbadlyandAIsystemfailsisfar
moreimportantthathowoftenitsucceeds.Inreality,
anAIsystemthat’s99.99%accuratecouldbedeemeda
completefailureifthe0.001%offailuresarecatastrophic.
Accuracyisnottheonlyimportantfactor–andit’s
certainlynotthemaincauseofmostAIprojectfailures.ThecommercialsuccessofanAIprojectisdependentonacomplexcombinationoffactors,whicharetoooftenignoredorrelegatedtosecondaryconcerns.
However,thesesupposedlysecondaryconcernsare
actuallycriticaltosuccess.Thesefactorsarejustas
importantasaccuracy,maybemoreso,becausetheyareoftentherootcausebehindproblematicbehaviorandfailedAIinvestments.Thesesuccessfactors,whichareoutlinedhere,mustbeconsideredduringthe
developmentandimplementationofanyAIsystemastheywillinstillconfidenceamongthesystem’susersandintheleadersthataredrivingandpayingforit:
AIThatWorks
•ProvenAccuracy–Isgoodatsolvingtheproblem,asmeasuredbybenchmarktests.
AIThatWorksReliably
•Robustness–Handlesunusualormaliciousoutputseffectively.
•Dependability–Alwaysproducesanoutputwithintherequiredtimeframe.
•Stability–Performanceisconsistentanddoesnotdriftovertime.
AIThat’sAlignedtoHumanExpectations
•Sensibility–Makesdecisionsinlinewithhowtheworldorsocietyworks.
•Humility–Understandsitsownlimitations,andrefusestoanswerquestionswhereitdoesn’tknowtheanswer.
•Extrapolatessensibly/Failsgracefully–Actssensiblywhenconfrontedwithscenariosbeyondthoseinwhichitwastrainedandfailssafely.
•Explainability–Canjustifyhowitsolvedtheproblemratherthanworkingasamysteriousblackbox.
AIThatWorksinPeople’sBestInterests
•Fairness–Non-biased.Isequallyfairtoallsub-groups.
•Sustainability–Minimizesharmfulimpactsfromtrainingandongoinguse.
•Privacy–Protectsthesensitivedatathatitwastrainedon.
Conclusion:MakingAIusefulforeveryone
Weseenowthatactuallysolvingataskaccuratelyisjustoneof12equallyimportantfactorsthathelpeveryonetofeel
muchmoreconfidentabouttheAIproductsandservicestheyuse.
Weshouldn’tmakethemistakeofthinkingelements
likehumility,sustainabilityandreliabilityaretheboring
secondaryelementsofanAIendeavor.Whilefocusingonthesefactorswon’tcreatetheexcitementthatcomesfromanAI-generatedimageoressay,itwillensuretheoutputsyourbusinesscreatesaretrustedanduseful.Andonce
thathappens,overtime,thechancesoffailurewillreduce,thelevelsofadoptionwillincrease,andthelikelihoodofcommercialsuccesswillberaisedsignificantly.
AsAIplaysanever-increasinglyimportantroleinourlives,
peoplemustfeelconfidentinthesolutionstheyuse.
Ensuringthese12factorsarealwaysconsideredwillmeanyourbusinessdeliverssignificantcommercialvaluefromAI.Inthisplaybook,wewilldiscusseachofthese12factorsinmoredetail.
6GenAILab2024
Thingspeoplenormally
focusoninAI
Refusingtoanswer,oratleastreportingwhenitdoesn’tknowsomething
ExtrapolatesSensibly
willdosomethingsensible
whenconfrontedwithunseen
databeyondtheboundsof
whatitwastrainedon
Robustness
Willhandle
unusualormalicious
inputswell
Privacy
willnotleak
sensitivedataitwas
trainedon
ProvenAccuracy
Isitgoodatsolvingtheproblem,asmeasuredbytests?
FailsGracefully
Ifitfails,willitfailinasafe&sensibleway?
Sustainability
Impactoftraining
andongoinguseis
notharmful
Explainability
Canitexplain/justify
howitsolvedtheproblem?
-AIthatworks
CONFIDENCE/
TRUSTINAN
AISOLUTION
Thingswenow
recognizearecrucialtomakeAIsuccessful
Stability
performancewill
notunknowinglydrift
overtime
Sensibility
Makesdecisionsinlinewithhowtheworld/nature/physics/cultureworks
Dependability
Willalwaysproduce
anoutput,inthe
requiredtimeframe
Humility
Fairness
Outputisnotbiased
againstanysub-groups
AIthat’salignedwithhumanexpectations
AIthatworksreliably
AIthatworksinpeople’s
bestinterests
7
TIJANANIKOLIĆ
EXPERTINRESIDENCE
PROVEN
in
ACCURACY
WhendowegettosaythatAIisgoodenough?Whatdoes“good”evenmean?
tobasedecisionsonasthedifferentaccuracymeasuresweusecandramaticallyinfluencehowweinterprettheiroutputs.
Itisimperativetoalsoconsiderreal-worlddimensions.Amodel
mightperformexceptionallyintestsbutfailprofoundlywhen
appliedtoreal-worldscenarios.Thisdiscrepancyhighlightsthe
importanceofacomprehensivedefinitionofgoodness—onethatincorporatesvariousfacetssuchasethicalimplications,social
impact,andalignmentwithhumanvalues.
GenerativeAIhasthrustAIintothespotlightinsectorsfrom
creativeartstodataanalysis,andcustomerservicetoengineering.
However,thisrapidrisehasbroughttoprominencealong-standing
questioninAI:WhatdoesitmeanforAItobe“good”?Traditionally,
theperformanceofmachinelearningmodelshasbeenassessed
onlythroughnarrowmeasuresoftestandvalidationscores.
However,thenewfocusonGenerativeAIwithitscreativityand
hallucinationshasforcedustoreconsiderwhataccuracyreally
meansorwhetheraccuracyisevenrelevantinthisnewworld.
Simplisticmeasuresofaccuracyarenolongergoodenoughforus
8GenAILab2024
WHY?
•AnyonewhoisinvolvedindecisionmakingaroundAIneedstounderstanditsperformance.Thisistruebothofthe
usersofasystem,andofthepeopledesigning,buildingandfundingit.
•Thisneedtounderstandperformancemakesithighlydesirabletocreateasingle,easilydigestiblenumber–accuracy,whichrepresentsthatperformanceprofile.
•However,inalmostallcases,nosinglenumbercantell
youthewholestoryofhowamachinelearningsystem
performs,soweneedoftenneedtousemultiplemetricstodescribetheperformanceprofile.
•Evenifwecouldcapturethehow“good”amodelisinasinglenumber,thatisnotenoughas“good”isasubjectiveterm.
•UnderstandingthemultifacetedessenceofwhatsuccessinAIlookslikeispivotalduetothepotentialconsequencesoffocusingtoomuchonanyonefacet.
•Insomecases,focusingonthewrongtypeofaccuracycancausereal-worldharm.Forexample,astudyof
breast-cancerscreeningintheUKshowedthatanaïve
focusonthewrongsortofaccuracyledtoover-diagnosesandmanywomenunnecessarilyundergoingpainfulandstressfultreatments.
WHAT?
•ConsiderasimplemeasureofaccuracyforanAI
computervisionsystemclassifying100objects,eitherapplesororanges.Wecouldcalculatetheaccuracy
ofthatsystembyjustmeasuringthepercentageofclassificationsthatarecorrect.
•However,thispercentagewouldonlybeausefulmeasureiftherewereexactlythesamenumberofitemsin
bothclasses.If,howeverthereweremoreapplesthan
oranges,asimplepercentageaccuracyfigurewouldnotaccuratelyreflecttheperformanceoftheclassifier.Inanextremecase,iftherewere99applesandoneorange,
andtheclassifieralwayssaid“apple”it’snaïveaccuracy
wouldbe99%,eventhoughithadnoabilitytodetectthedifferencebetweentheclasses.
•Forthisreason,morecomplexstatisticalmeasuresare
used,oftensuchasprecision&recall,orsensitivity&
specificity.Thesemeasuresdescribedifferentfacetsof
accuracy,showinghowwellitperformsinbothitspositiveandnegativepredictions,repeatablyovermultipleuses.
•However,evenusingthesemoresophisticatedmeasuressuchasaccuracy,precisionandrecalldoesnotmeanyourmodel’sreal-worldsuccessisguaranteed.
•Infact,aswewillshowinthisPlaybook,accuracyon
benchmarktestsisonlyoneofmanyequallyimportant
facetsofsuccessthatmustbeconsideredinordertonotjustbesuccessfulonpaper,buttohavegenuinereal-worldsuccesswithuserswhoareconfidentinthatsystem.
RECOMMENDATIONS
•First,ensureyouaremeasuringandcommunicating
accuracyeffectively.Itisextremelyunlikelythataccuracycanberepresentedbyasinglenumber,sousemore
appropriatemeasurestosetusers’expectationsabouttheperformanceprofileofasystem.
•Don’tusesimplisticmeasuresofaccuracyasthesolecriteriafordeclaringsuccessinanAIsystem.
•EducateeveryoneinthebusinessabouthowtotalkaboutaccuracyinAIsystems.Striveforaculturewhereeveryone,rightuptotheboardroom,iscomfortableaskingquestionsaboutsensitivityandspecificity,precisionandrecalletc.
•Beyondaccuracy,aholisticapproachisnecessary.
Organizationsmustembracetransparency,ethics,andfairnessintheirAIendeavors.Considerusingaplaybook,likethisone,toremindeveryoneinvolvedinAIsystemsdesigntothinkaboutthemultiplefacetsthatleadto
successfulAI,notjustonaccuracyalone.
•Oneoftheprimarypitfallsisamyopicfocusontechnicalmetrics.Ignoringbiasesintrainingdata,overlooking
ethicalimplications,orneglectingcommunityfeedbackcanleadtocatastrophicoutcomes.Contextualfit,forinstance,cannotbemeasuredeasily.Butisthefinal
definingfactorfor“goodness”
LINKS
•ValidatingLargeLanguageModelswithReLM.Kuschnicketal.CarnegieMellonUniversity,2023.
/
pdf/2211.15458.pdf
•Langchainblogpost:“HowCorrectareLLMEvaluators”,problematizingthepossibilitiestofacilitatemeasurementof“provenaccuracy”.
https://blog.langchain.dev/how
-
correct-are-llm-evaluators/
•GEDLTprojectonprompting,writingstylesandqualityof
answeringTheGDELTProjectisarealtimenetworkdiagramanddatabaseofglobalhumansocietyforopenresearch:
/large-language-models-llms
-
planetary-scale-realtime-data-current-limitations/
9
PROVENABILITY
MITALIAGRAWAL
ROBUST
in
EXPERTINRESIDENCE
WillanAIsystemalwaysrespondtosimilarinputsinaconsistentmanner?Canitcope
withdeliberatemaliciousattacksintheinput?Allofthesequestionsrelatetotheideaofrobustness-ameasureofhowwellanAIsystembehaveswhenthesignalsitreceivesarenotthesameaswhatitwastrainedon.
RobustnessisacornerstoneofreliableAIsystems,ensuringresilienceinthefaceofadversity.Inthedynamiclandscapeofartificialintelligence,twoparamountchallengesarise:dealingwiththehugevariationofinputsasystemwillencounterintherealworldinaconsistentmanneranddefendingagainstdeliberatelymaliciousinputs,oftenmanifestedasadversarialattacks.
UnderstandingandfortifyingAIagainstthesechallengesisessentialinshapingafuturewhereAItechnologiescanbetrustedandreliedupon.
WHY?
.InanerawhereAIisincreasinglyprevalentinourdailylives,robustnessisafundamentalpillaroftrustworthiness.
.Duetotheircomplexitythough,AIsystemsaresusceptibleto
variousvulnerabilities,bothinthealgorithmsandthedatatheyaretrainedon.
.AsimplewaytodemonstrateifanAIsystemisrobustornotistoaskittoperformasimilartasktwice.Providingsignificantlydifferent
answerstothesamequestionwillcausehumanstorapidlylosetrustinthesystem,butmanyAIsystemswillfailthissimpletest.
.Therewillalwaysbeconfusinginputsinthereal-world,and
unfortunatelytherewillalwaysbemaliciousactorswhotryto
deliberatelyaffecttheoutputsofourAIsystems.Eveninthebestcases,withnomaliciousactor,wewillstillforeverbelockedinanarmsracebetweenourmachinelearningmodelsandtheinfinitecomplexitythattherealworldwillthrowatthem.
.Therefore,therewillalwaysbeaneedtouseapproachesto
maximizetherobustnessofourAImodels,andinsomecaseswerequireverifiableproofofthatrobustness.
.Byaddressingthecomplexitiesofunusualdataandadversarial
10GenAILab2024
ROBUST
attacks,wepavethewayforAIsystemsthatnotonlyexcelunderidealcircumstancesbutareresilientinthefaceof
unexpectedinputsanddeliberateattacks.
WHAT?
.Whilstmachinelearningexpertshavelongknownabouttheproblemsofrobustness,GenerativeAItoolsnow
alloweveryonetoseetheextentofthisproblem–evensmallchangesinthephrasingofapromptcanproducecompletelydifferentoutputsandmeanings.
.Deliberatelymaliciousinputs,knownasadversarial
attacks,exploitthevulnerabilitiesofAIsystems,leadingthemtomakeerroneousjudgments.Theseattackscanhavedireconsequences,especiallyinsafety-related
applicationssuchasautonomousvehiclesorhealthcaresystems,somakingrobustdefensesisimperative.
.Adversarialattacksfallintotwomainclasses
.White-boxattackswhichuseknowledgeofthemodeltoachievetheirimpact.
.Black-boxattackswhichdonothaveknowledgeoftheunderlyingmodel.
.Theseattacksmightalsobeuntargeted,wheretheaimistojustachieveanycorruptionoftheoutput,ortargeted,wheretheaimistocoercethemodeltoproduceaspecificoutput.
.Thankfully,maliciousattacksonAIsystemsarerelativelyrare,andthemorecommonproblemiswhereAI
systemsencounteratypical,unfamiliardatainreal-worldscenarios.Thiscanrangefromnovelenvironmental
conditionsforautonomousvehiclestounprecedenteduserinputsinchatbots,challengingthesystem’sabilitytomakeaccuratepredictionsordecisions.
.Whenfacedwithunusualdata,AIsystemsmightexhibitunpredictablebehavior,potentiallyjeopardizingthe
trustabilityoftheoutputs.Ensuringrobustnessinsuchsituationsnecessitatestrainingmodelsnotjustonlargerdatasetsbutonmorediversedatasetsthatencompass
(A)
awidearrayofpossibleinputs,preparingthemforunforeseenscenarios.
RECOMMENDATIONS
.Makesureyouunderstandthescaleoftheproblemin
yourusecase–testyoursystemstomakesurethatsmallchangesintheinputdonotproducesignificantchangesinthemeaningoftheoutput.
.ForLLMsspecifically,guaranteedrobustnessismuch
hardertoachievebecausethesemodelsdonotactuallyunderstandthemeaningofthelanguagetokenstheymanipulate.Whereahumanmightseetwophrases
asbeingthesame,theycouldbeinterpretedinverydifferentwaysbyanLLMandproducingsubstantiallydifferentoutputs.
.Additionally,inputpreprocessingtechniquescould
(B)
enhanceasystem’sabilitytoprovidemorerobustresultsbyensuringmultiplerephrasedversionsofthepromptproduceconsistentoutput.
.Traditionallyusedincybersecurity,redteaminginvolvessimulatingadversarialattackstoidentifyvulnerabilitiesandweaknessesinasystem.WhenappliedtoAI,red
teamingservesasapotenttooltoassesstheresilienceofmachinelearningmodels,algorithms,andapplicationsagainstmaliciousintentandunexpectedinputs.
.Wecanalsouseothermachinelearningsystemsasaredteam,exploitingmalicioustechniquesforpositiveuseinanapproachcalledadversarialtraining.Inthisapproachmodelsareexposedtoadversarialexamplesduring
training,enablingthemtorecognizeandresistsuch
inputs.Thisapproachpitsonemachinelearningsystemagainsttheother,resultinginbothbeingbetterandtheoverallsystembeingsignificantlymorerobust.
.Insomecases,itmaybepossibletouseverifiably
robustapproachestotraining,suchasIntervalBound
Propagation(IBP),whichcanguaranteecertainlevelsofrobustness,althoughoftenattheexpenseofaccuracyi.e.overallaccuracymaybelower,butyoucanbesurethat
whenitdoesmakeapredictionitiscorrect.
Imagesshowingconfusingdataan
AIvisionsystemmightencounterin
thereal-world,sometimesnaturally
occurring,sometimesasaresultof
maliciousattacks.
Anexampleofhowaseeminglyinconsequentialreframing
oftheinputtoanLLMcanproducesubstantiallydifferent,
andincorrect,output.
11
WEIWEIFENG
DEPENDABILITY
in
EXPERTINRESIDENCE
WhilstmostofthepropertiesdescribedinthisplaybookrelatetothecontentandqualityofanAIsystem’soutput,weoftenneglectsomeoftheoperationalconsiderationsfor
deployingAIinreal-worldsituations.Oneofthemostimportantoftheseisdependability–willanAIsystemactuallygiveusananswerwhenweneedit?
AswestarttomoveAIsystemsfromthelabtothereal-world,one
ofthepracticalrealitiesthatwemustconsideristiming.Inmany
cases,thespeedofanAIsystem’sresponseiscrucial.Itdoesn’treallymatterifacustomer-servicechatbottakes10secondstorespond,butitwouldclearlybeabigproblemifanautonomousvehicletook10
secondstoconsideritsactionswhilstdrivingatspeedonaroad.
Thispresentsanimportantanddifficultdilemmatosolve.ModernAIhasachievedmanyimpressiveresults,butthisislargelypoweredby
hugeneuralnetworkmodelswhichareslowtoexecuteandrequirelevelsofcomputepowerthatarenormallynotavailableinreal-worlddeploymentsofAIsystems.Ifwedon’thaveguaranteesthatanAI
systemwillrespondasquicklyasweneeditto,thenconfidence
andadoptionwillfalter.Fundamentallydifferentarchitecturesarerequiredwheretimelinessofresponseisimportant.
12GenAILab2024
DEPENDABILITY
WHY?
•Inreal-worlddeploymentsofAI,timingmatters.Ahigh-performingmodelwithgoodaccuracyisworthlessifit
doesn’trespondquicklyenoughforitsoutputtobeused.
•Thisismostobviousinsafety-criticalandreal-timecontrolsituationswherenon-negotiableguaranteesonresponsetimesarepresent.
•Eveninsituationsthatarenotsafety-related,responsetimecandramaticallyaffecttheuserexperiencetothepointthattheymightloseconfidenceinasystemthatdoesn’trespondquicklyenough.
•Inothersituations,lowlatencyresponsesarerequiredforreasonsofresponsivenessandthroughput.Longdeliberationinpursuitoftheperfectanswerinthesetypesofproblemscouldcausewidespreaddisruption.Forexample–
•Incredit-cardfrauddetection,wherevastnumbersof
transactionsmustbeassessedquicklytopreventdelays.
•InAI-supportedemergencyresponsesystems,wherestressandtheneedforswiftinformationavailabilityhaveadirectimpactonoutcomes.
•Inreal-timeschedulingproblems,suchastraffic-lightscheduling,elevatordispatchingetc.
•Dynamicadvertisementselectiononwebsites,whereaslowdecisionwouldruintheuser-experienceofthehostwebsite.
WHAT?
•ThespeedofanAIsystem’sresponsehasalwaysbeena
primaryconsiderationinAIresearch,asmanyoftheclassicbenchmarksofartificialintelligencehaveatimingelementtothem–playinggames,havingconversations,driving
vehicles,interactiverobotsetc.
•Inmanycasesitmaybepossibletosolveamachine
learningtaskwithgoodorevenperfectaccuracyiftimingisnotanissue,butsolvingtheengineeringproblemof
deployingthatsamemodelintoamoreconstrainedandtime-criticalenvironmentmaybeimpossible.
•Insomecases,itmaybepossibletocompressorprunealargemodel,toimproveitsresponsetime.ThisisalreadycommonplaceinmanyEdgeAIdeploymentsinorder
tosqueezemoreperformanceoutoflimitedhardware.However,whilstthisapproachimprovesperformance,itcannotguaranteeperformance.
•Mostmachinelearningmodelsareeffectivelynon-
deterministic,meaningthattheexecutionofthe
model(inference)willneverbepredictable.Therefore,ifguaranteesofperformancearerequired,then
justshrinkingabigmodelwillneverbetheanswer.Fundamentallydifferentarchitecturesarerequired.
•Themostobviousandwell-knownarchitectureisthe
so-calledclassifier-cascade.Inthiscase,machinelearning
modelsarearrangedinacascade,startingwithextremelysimpleandsmallclassifiersthatcanprovideaquickanswerimmediately.Iftimeallows,processingpassesontoamorecomplexbuttime-consumingclassifier,andthisprocess
continuestothebottomofthestack.Thisarchitecturemeansthatananswercanbewecaninterruptthe
processingatanypointandgetananswer.
•Thisissimilartowhatweseeinhumandecisionmaking,wherewehavefast“System1”thinkingtogivean
immediateresponse,followedbyslowerandmore
deliberate“System2”thinking.Inthecaseofclassifiercascades,theremaybehundredsoflevels,iterativelyrefiningtheanswerasfarastimeallows.
•Inmostcases,thefirstlevelofsuchacascadewouldbeanon-AIsystem,whichencodesbasicdefaultbehavior.
•Theperformanceofsystemscanbeenhancedthroughtieredapproaches.Ateachtier,thesolutionshould
beevaluatedagainsttheprevioustiertodetermineifitprovidesasignificantimprovement.Thisevaluationprocessallowsforearlytermina
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能制造财务担保合同
- 保险单质押贷款业务保险理赔跟踪合作协议
- 矿区土地承包开发投资合作协议书
- 基础设施财务代理与运营管理协议
- 餐饮外卖平台合作协议书
- 住宅区拆迁补偿安置协议书(含房屋分配方案)
- 汽车抵押贷款反欺诈合同
- 车辆抵押贷款转全款购车及贷款利率调整合同
- 企业分红与财产分配协议
- 体育场馆场地租赁及赛事运营管理合作协议
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 2025年湖南出版中南传媒招聘笔试参考题库含答案解析
- 教学能力比赛国赛一等奖教案设计模板
- 19QAKE质量保证关键要素(Quality Assurance Key Elements)稽核手册
- 附件9:未取得国外国籍的声明
- 人教版英语(一年级起点)1-3年级单词表【完整版】
- 实验室生物安全程序文件(共43页)
- 数学分析试题及答案(两份)
- 儿童手机设计报告
- 示范区精装修成品保护
- JISG3506-2004高碳钢盘条(中文版)
评论
0/150
提交评论