




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八讲空间自相关分析
SpatialAutocorrelation1SpatialAutocorrelation:
Moran’sI2SpatialAutocorrelationandMoran’sISeveraltestsexistformeasuringthespatialautocorrelationrelatingtoareasorpoints.OnesuchmeasurehasbeendevisedbyMoran(1950)andcanbeappliedtoareapatternsandtopointpatterns.ForarealdatatheequationforMoran’scoefficientis:WhereI=Moran’sspatialautocorrelationcoefficient n=thenumberofareasinthestudyregion J=thenumberofjoins X=avalueforanarea(ordinalorinterval) Xi,Xj=aretwocontiguousareas(oneithersideofajoin) c=apairofcontiguousareas3HypotheticalStudyRegion4CalculationsforMoran’s
SpatialAutocorrelationCoefficientI5CalculationsforMoran’s
SpatialAutocorrelationCoefficientI6CalculatedMoran’sIMoran’sICalculated:Moran’scoefficient(I)is-0.183,althoughthisvalueonitsownisnotverymuchuseindescribingthedegreeofspatialautocorrelationinavariable.TherangeofpossiblevaluesofIdependsonthespatialstructureoftheparticularregion.TodeterminewhatthevalueofIimpliesitisnecessarytocarryoutasignificancetest.7SignificanceThesignificancetestinvolvescalculatingthestandardnormaldeviatefromthecalculatedvalueofI,theexpectedvalueI,anditsstandarddeviation.Therearetwopossibleformsofthenullhypothesis: normalityandrandomizationNormality:Thenullhypothesisisthattheobservedvaluesofthevariablearetheresultofarandomsamplefromanormallydistributedpopulationofvalues.Randomization:Thequestionaskedis“givenaparticularsetofvaluesX,whatisthepossibilitythattheycouldhavebeenarrangedintheobservedwaybychance?Thenullhypothesisisthatthespatialdistributionisrandom.8NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Where n=thenumberofareasinthestudyregion J=thenumberofjoins L=thenumberofareastowhichanareaisjoined
9NormalitySubstitutingvaluesintotheformulaweget:Theequationforthestandarddeviationofthisvalueis:ThepreviouslycalculatedvalueofIcannowbeconvertedintoastandardnormaldeviateusingthefollowingequation:10NormalityNotethattheexpectedvalueofIforarandomarrangementissmallandnegative(-0.2)Asmallervalue,onefurtherfromzerointhenegativedirectionimpliesdispersion.Positivevaluesimplyclustering.AfterconvertingtheobservedItoastandardnormaldeviate,itssignificancecanbeassessedbyreferencetoatableofcriticalvalues.11NormalityAdoptingthe0.05significancelevel,thetwo-tailedcriticalvalueforapositivestandardnormaldeviateis1.96.Atwo-tailedtestisappropriate,sincenospecificdirectionofdepartureishypothesized.Theobservedvalue(0.061)islessthanthecriticalvalue,sothenullhypothesismaynotberejected.Theobservedarrangementofvaluesisnotsignificantlydifferentfromrandom(randomlysamplingfromanormaldistribution).Itcouldhaveeasilyoccurredunderthenullhypothesisofrandomsamplingfromanormallydistributedpopulation.12RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofrandomizationis:Theequationforthestandarddeviationofthisvalueisrathermorecomplex:Where k=kurtosisKurtosisisameasureofpeaknessofthedistributionofX13CalculationofKurtosisforRandomizationSignificanceTestofI14RandomizationSubstitutingvaluesintotheformulaweget:Theequationforthestandarddeviationofthisvalueis:ThepreviouslycalculatedvalueofIcannowbeconvertedintoastandardnormaldeviateusingthefollowingequation:At0.01significancelevelthetwo-tailedcriticalvalueis2.576. Sincethecalculatedvalueislessthanthecriticalvaluethenullhypothesisisnotrejected.Theobservedarrangementisnotsignificantlydifferentfromrandom.Itcouldhaveoccurredbychance.15CometruewithArcGISArcToolbox>SpatialStatisticsTools>AnalyzingPatterns>SpatialAutocorrelation(Moran’sI)OrHigh-LowClustering(Getis-OrdGeneralG)(吉瑞C)吉瑞C在[0,2]之间吉瑞C:0-1表示空间正相关吉瑞C:1-2表示空间负相关吉瑞C=1表示相互独立Moran’sI在[0,1]之间Moran’sI接近于1,表示空间正相关,即高高相邻,低低相邻Moran’sI接近于-1,表示空间负相关,即高低相邻,低高相邻Moran’sI接近于0,表示空间无相关性,即随机分布16ExercisewithBeijingtown17FurtherTopicsinSpatialAutocorrelation18SpatialAutocorrelationforPointDataMeasuresofspatialautocorrelationcanbeextendedtosituationsofpointvalues.Withpointdata,insteadofconsideringtherelationshipbetweenpairsofcontiguousareavalues,itisnecessarytomeasuretherelationshipbetweenallpairsofpointvalues,takingintoaccountthedistancesseparatingthem.Iftherearenpoints,therewillben(n-1)/2possiblepairsofpoints.Withasfewas20pointsthismeans190pairsofvaluestobemultipliedandsummed.Thetechniquecanbequiteeasilycomputerized(verytediousbyhand).Wewillreviewasimpleexample.19RevisedMoran’sIforPointPatternsThetestforspatialautocorrelationinpointpatternsisarevisedversionofMoran’scoefficient:WhereI=Moran’sspatialautocorrelationcoefficient n=thenumberofpoints Wij=theweightgiventotherelationshipbetween twopointsiandj p=apairofpointsTheweightisusuallythereciprocalofthedistancebetweenthetwopoints.Thedistancebetweenpointsiandjaredefinedasdij,thusWij=1/dij.Eachweightismeanttobeameasureoftheinfluenceexertedbyonepointonanother.Theuseofthereciprocalofdistanceasaweightimpliesthattheinfluencedecreaseswithdistance.20SignificanceTest:NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:where
Thenullhypothesisofnormalityinvolvestheassumptionthatthepointvalueswithinthestudyregioncanberegardedasarandomsampleofvaluesdrawnfromanormallydistributedpopulation.21StepsforcalculatingsignificancefornormalityThecalculationofthisexpressioncanbethoughtofintermsofanumberofsteps:Foreachpointadduptheweightsbetweenitandallotherpointstoget:Squarethetotal,toget foreachpoint.Addupallthesesquaredtotals,togetWewillexamineanapplicationofthesestepsforthistest.22SignificanceTest:RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:whereTherandomizationnullhypothesisonlytakesintoaccounttheparticularsetofpointswithinthestudyregionIngeneral,randomizationisthesaferchoicesinceitinvolvesfewerassumptions23HypotheticalPointPattern24Calculationsforallpoints25Calculationsforallpairsofpoints26Wij=1/dijCalculationsrelatingtothematrixofweights27CalculatedMoran’sIMoran’sICalculated:Moran’scoefficient(I)is-0.0825,althoughthisvalueonitsownisnotverymuchuseindescribingthedegreeofspatialautocorrelationinavariable.TherangeofpossiblevaluesofIdependsonthespatialstructureoftheparticularpointpattern.TodeterminewhatthevalueofIimpliesitisthereforenecessarytocarryoutasignificancetest.28SignificanceTest:NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Therefore
Assumingatwo-tailedtestatthe0.05significancelevel,theobserveddegreeofspatialautocorrelationisnotsignificant(criticalvaluez=1.96)29SignificanceTest:RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Therefore
Assumingatwo-tailedtestatthe0.05significancelevel,theobserveddegreeofspatialautocorrelationisnotsignificant(criticalvaluez=1.96)30FromGlobaltoLocal
MeasuresofSpatialPattern31
HepatitisRatesofCaliforniaCountiesin1998(per100,000pop.)
33LocalSpatialStatisticsGeneraltestsaredesignedtoprovideasinglemeasureofoverallpatternforamapconsistingofpointlocationsThesegeneraltestsprovideatestofthenullhypothesisthatthereisnounderlyingpattern,ordeviationfromrandomness,amongthesetofpoints.Examples:nearestneighbortest,thequadratmethod,andMoran’sIThesearecalledGLOBALstatistics–asinglesummaryvalue.LocalSpatialStatisticsSometimestheresearcherwantstoknowifthereisaclusterofeventsaroundasingleorsmallnumberoffoci.Forexample,doesdiseaseclusteraroundatoxicwastesite,crimeclusteraroundexoticdancingestablishments.Sometimeswewanttohaveamethodtodetectclustering.Noaprioriideajustaneedtodetermineifclustersexist.ThesearecalledLOCALspatialstatistics.LocalMoran’sILocalMoran’sIisalocalspatialautocorrelationstatisticbasedontheMoran’sIstatistic.ItwasdevelopedbyAnselin(1995)asalocalindicatorofspatialassociation(LISAstatistic)AnselindefinesLISAashavingthefollowingproperties:TheLISAforeachobservationgivesanindicationoftheextentofsignificantspatialclusteringofsimilarvaluesaroundthatobservation;ThesumofLISAsforallobservationsisproportionaltoaglobalindicatorofspatialassociation.36AnalysisAnalysisisverysimilartothatofglobalMoran’sI.ValuesofIithatexceedE(Ii)indicatepositivespatialautocorrelation,inwhichsimilarvalues,eitherhighvaluesorlowvaluesarespatiallyclusteredaroundpointi.ValuesofIibelowE(Ii)indicatenegativespatialautocorrelation,inwhichneighboringvaluesaredissimilartothevalueatpointi.Again,anormallydistributedZstatistic(2-tailed)iscalculatedtodeterminesignificance.37Spatialweightingmethodstheinputcanalsobeaweight,m,thatthedistanceisraisedinordertoshowtheinfluenceofdistance.Anexampleofthismightbewhichdisraisedtothepowerofm=2.Forthistypeofweightingscheme,thestatisticiscalculatedforbandsonly.BearinmindthateachIivalueforagivensiteIrepresentsassociationbetweentheithsiteandonlythejvaluesinagivenband.38FormulaforLocalMoran’sITheformulais:Where andPerhapsRemember,whenthisweightingschemeisused,thestatisticiscalculatedforbandsonly.Aspatialweightsmatrixmayalsobeused.39RandomizationHypothesisTheExpectedvalueis:Thevarianceis: Where: 40LocalSpatialStatistics:Getis’sGiStatisticTherearetwovariationsofthisstatistic,dependingonwhethertheunit(observation)iaroundwhichtheclusteringismeasuredisincludedinthecalculations.Gidoesnotincludetheobservationaroundwhichthemeasureisbeingcalculated.
Gi*doesincludetheobservationaroundwhichthemeasureisbeingcalculated.Getis’GiPurpose:totestwhetherclusteringexistsaroundacertainlocation(i)Where GiisthemeasureoflocalclusteringofattributeXaroundi, XjisthevalueofXatj, Wijrepresentsthestrengthofthespatialrelationshipbetween unitsiandjwhichcanbemeasuredaseitherabinary contiguityvariableoracontinuousdistance-decaymeasureIfhighvaluesofXareclusteredaroundi,Giwillbehigh.IflowvaluesofXareclusteredaroundi,Giwillbelow.Noclusteringofvaluesaroundi,Giwillbeintermediate.Getis’GiTheexpectedvalueofGiis:where Andthevarianceis:Wherethesubscriptiindicatesthecalculationofthemeanandvarianceofxexcludingthevalueati.43Getis’sG*iStatisticPurpose:totestwhetheraparticularlocationianditssurroundingregionhavehigherthanaveragevaluesonavariableofinterest.OrdandGetis(19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国卧螺沉降离心机数据监测研究报告
- 2025至2030年中国南瓜挂面市场分析及竞争策略研究报告
- 2025至2030年中国单相一位电话插座行业发展研究报告
- 2025至2030年中国医用输液贴行业投资前景及策略咨询报告
- 2025至2030年中国分光晶体市场分析及竞争策略研究报告
- 跨国媒体合作企业制定与实施新质生产力战略研究报告
- 调酒师行业趋势试题及答案
- 国家电网应急处理流程试题及答案
- 虚拟订车合同范本
- 钢板回收销售合同范本
- 科目三新规教学大纲
- 血液透析室患者接诊制度
- 业余足球俱乐部数据统计表
- 初中八年级历史-八年级历史下册伟大的历史转折之中共十一届三中全会
- 初中数学-图形的平移教学设计学情分析教材分析课后反思
- 【复习资料】01180电视采访(复习提分要点)
- 2023年国家工信部信息中心事业单位招聘笔试参考题库(共500题)答案详解版
- JGT266-2011 泡沫混凝土标准规范
- 合理自我分析报告RSA
- GB/T 19670-2023机械安全防止意外启动
- 财产保险实务-教案项目1、2走进财产保险、企业财产保险
评论
0/150
提交评论