




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§16.1.3
分式的通分第16章分式
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:
分式的基本性质:(其中M是不等于零的整式)
回忆分式的约分和最简分式分式的约分:把分式的分子与分母的公因式约去,这种变形称为分式的约分。(化简分式时,通常要使结果成为最简分式或者整式)最简分式:分子和分母不再有公因式的分式称为最简分式。回忆教学目标:1.掌握分式的基本性质,会运用分式的基本性质进行通分。2.会确定几个分式的最简公分母。教学重点:利用分式的基本性质通分教学难点:确定几个分式的最简公分母。?思考问题1:请你说说什么是分数的通分?分数通分的依据是什么?比如
利用分数的基本性质,将几个异分母的分数化成同分母的分数,这种分数的变形就叫做通分。通分的依据是分数的基本性质。联想分式的通分思考:(1)分式的通分与分数的通分哪些相似之处
(2)分析分式通分的关键
(3)最简公分母的意义
(4)如何确定几个分式的最简公分母探究点三:分式的通分具体任务:内容:阅读课本4-5页例4及课件问题2时间:3分钟分式的通分通分的思想
利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母的分式化成同分母的分式,这样的变形叫做分式的通分。异分母的分式同分母的分式转化思想通分的关键是确定几个分式的公分母。最简公分母问题2:请你找出分式的最简公分母?最小公倍数相同字母取指数最大单个字母连同指数
针对练习:确定下列各组分式的最简公分母.(1)最简公分母是:12x2y(2)最简公分母是:4a2b2c例1:通分:(1)(2)解:(1)最简公分母是:(2)最简公分母是:针对练习:通分:(1)(2)
如何确定最简公分母。确定下列各组分式的最简公分母.(3)最简公分母是:(a+1)(a-1)(4)最简公分母是:2(m+4)(m-4)1、系数:取各分母系数的最小公倍数。2、字母或因式:取各分母所出现的所有的字母和因式。3、指数:取相同字母的最高次幂。
最简公分母:取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。试确定下列各组分式的最简公分母.最简公分母的确定:(1)最简公分母是:6a2(2)最简公分母是:例3:通分:(1)(2)(3)解:(2)的最简公分母为(x-y)(x+y),即x2-y2,
所以:例3:通分:(1)(2)(3)解:(3)因为x2-y2=
,x2+xy=,
所以的最简公分母为
,
因此:
,
。巩固训练通分:(3)解:最简公分母是2a2b2c.解:最简公分母是(x+5)(x-5).(3)能力提升:已知,求的值。教学小结:一、概念:二、依据:通分也是应用分式的基本性质把分式的分子、分母都乘以同一个整式,使分式的值不变.
三、关键:确定最简公分母.四、求几个分式的最简公分母的方法与步骤:1、系数:
;2、字母或因式:
;3、指数:
;把几个异分母的分式分别化为与原来的分式值相等的同分母的分式叫分式通分
.各分母系数的最小公倍数各分母所有的字母或因式各分母所有的字母或因式的最高次数课本练习3题和习题6页5题检测指导:1、 闭卷检测,独立完成(4分钟)2、 对子互批
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源研发项目资金使用审计保障合同
- 生物医药产业基地女性员工生育保险与职业发展支持合同
- 境外房产投资收益汇回合规审核协议
- 电视剧剧本改编及影视制作授权服务合同
- 跨国物流保险理赔服务协议
- 商业空间精装修及软装一体化项目管理合同
- 股票期权行权分割与员工持股计划合作协议
- 国际展会样品冷藏柜租赁及维护保养服务协议
- 2025年应用软件设计服务项目建议书
- 2025年小型路面保洁设备合作协议书
- 高中音乐-《音乐与诗词》教学课件设计
- 新一代国际结算系统需求规格说明书(汇款)V1.0
- 九个特种设备安全员守则
- 扫描电子显微镜SEM
- 煤矿测量规程
- 2023年郑州大学第一附属医院住院医师规范化培训招生(口腔科)考试参考题库+答案
- 保洁员(五级)技能理论考试题库(汇总版)
- 拖拉管施工专项施工方案(交叉口)
- 七年级下册英语第三次月考试题
- 涉密人员录用审查表
- GB/T 41631-2022充油电缆用未使用过的矿物绝缘油
评论
0/150
提交评论