2023年河北省张家口桥东区五校联考数学七年级上册期末教学质量检测模拟试题含解析_第1页
2023年河北省张家口桥东区五校联考数学七年级上册期末教学质量检测模拟试题含解析_第2页
2023年河北省张家口桥东区五校联考数学七年级上册期末教学质量检测模拟试题含解析_第3页
2023年河北省张家口桥东区五校联考数学七年级上册期末教学质量检测模拟试题含解析_第4页
2023年河北省张家口桥东区五校联考数学七年级上册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省张家口桥东区五校联考数学七上期末教学质量检测模拟试题

注意事项

1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑

色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)

1.下列四个图形中是正方体的平面展开图的是()

2.在同一平面内,已知NAoB=70。,NBoC=20。,如果OP是NAOC的平分线,则NBoP的度数为()

A.250B.25°或35°C.350D.25°或45°

3.如图所示,某公司有三个住宅区,4、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,

B,C三点共线),已知AB=IOO米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,

为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()

∣→ιoo^∙I»2oωκ4I

4区5区Clx

A.点AB.点BC.A,B之间D.B,C之间

4.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是()

A.此次调查属于全面调查B.样本容量是80

C.800名学生是总体D.被抽取的每一名学生称为个体

5.有一张长方形纸片ABCD(如图①),BC=6,将纸片折叠,使BC落在CO边上,8为8的对应点,折痕为CE

(如图②),再将长方形ADBZ以BZ为折痕向右折叠,若点。落在BC的三等分点上,则Co的长为()

A.8B.10C.8或10D.8或12

6.若X=-I是关于X的一元一次方程分+2=0的解,则”的值是()

A.B.-1C.1D.2

7.一个矩形的周长为3(),若矩形的一边长用字母X表示,则此矩形的面积为()

A.x(15-x)B.x(30-x)C.x(30-2x)D.x(15+x)

8.若将一副三角板按如图所示的不同方式摆放,则图中NC与N/?相等的是()

9.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()

A.0.1031×IO6B.1.031×107C.1.031×IO8D.10.31×IO9

10.若。与匕互为相反数,则下列式子不一定正确的是()

A.a+b—OB.a=-bC.α=M∣D.同=Ml

二、填空题(本大题共有6小题,每小题3分,共18分)

11.若(m-2)x∣ms=3是关于X的一元一次方程,则m的值是.

1ɪC3x-2xy+3y

12.若_+_=3,则分式的值为_________

Xyx+孙+y

13.已知四个数的和是100,如果第一个数加上4,第二个数减去4,第三个数乘以4,第四个数除以4,得到的这四

个新数恰好都相等,则这四个数分别是.

14.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8依,李丽平均每小时采摘7依.采摘结束后,王芳从她采摘的

樱桃中取出()25版给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了X小时,则可列一元

一次方程为.

15.若代数式2%-1的值比4x的值多3,则X的值为.

7

16.多项式2/-τra2b+~b2是__________次_____________项式;

2

三、解下列各题(本大题共8小题,共72分)

17.(8分)计算:⑴匕+^-/1x(72)(2)(—1)^—5x(—2)'+6

/OʌɜO,3

⑶(―3)一一一×—6÷—(4)(一2αZ?+3α)—2(2α—∕?)+2izZ?

、2)93

18.(8分)如图,每个小正方形的边长都为bZviBC的顶点都在格点上.

(D判断△4Bc是什么形状,并说明理由.

(2)求△A8C的面积.

19.(8分)已知含字母α,b的代数式是:3[α2+2(b2+ab-2)]-3(α2+2⅛2)-4(α⅛-α-1)

(1)化简代数式

(2)小红取α,6互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b

的值等于多少?

(3)聪明的小刚从化简的代数式中发现,只要字母6取一个固定的数,无论字母。取何数,代数式的值恒为一个不变

的数,那么小刚所取的字母b的值是多少呢?

20.(8分)解下列方程

(1)4+3(x-2)=X

,、4Λ-13X-1

(2)-------=1--------

36

21.(8分)观察下列等式:

111

第1个等式:4=-----=-------;

1×212

111

第2个等式:CI)----------------------

-2×323

111

第3个等式:CL----------=-----------

3×434

111

第4个等式:

解答下列问题:

(1)按以上规律写出第5个等式:为=

(2)求4+%+%++。2019的值;

I

(3)求=+2016x2019的值.

3x66x99x12

22.(10分)如图,线段AB=I0,点E,点厂分别是线段AC和线段BC的中点,求线段EE的长.

23.(10分)如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=I0,动点P从点A出发,以每秒6个单

位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,

(1)写出数轴上点B所表示的数.

(2)点P所表示的数;(用含t的代数式表示);

(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;

若不变,请你画出图形,并求出线段MN的长.

O6

24.(12分)如图,货轮O航行过程中,在它的北偏东60。方向上,与之相距30海里处发现灯塔A,同时在它的南偏

东30。方向上,与之相距2()海里处发现货轮8,在它的西南方向上发现客轮C.

按下列要求画图并回答问题:

(1)画出线段。5;画出射线OG

(2)连接A8交OE于点O;

参考答案

一、选择题(每小题3分,共30分)

1、B

【解析】试题分析:A.不是正方体的平面展开图;

B.是正方体的平面展开图;

C.不是正方体的平面展开图;

D.不是正方体的平面展开图.

故选B.

考点:几何体的展开图.

2、D

【分析】NBoC在/AOB的内部或外部进行分类讨论.

【详解】①当NBOC在NAoB的外部时,

NAOC=NAOB+NBOC=700+20°=90°,

VOP⅛ZAOC的平分线,

ΛZCOP=ɪNAOC=45。,

2

.∙.ZBOP=ZCOP-ZCOB=25o;

②当NBoC在NAOB的内部时,

ZAOC=ZAOB-ZBOC=70o-20o=50o,

∙.∙OP是NAoC的平分线,

:.ZCOP=—ZAOC=25o,

2

二ZBOP=ZCOP+NCOB=45°;

故选D.

【点睛】

本题考查角平分线的定义、角的和差关系,分类讨论是关键.

3、A

【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩

短两地之间的里程,就用到两点间线段最短定理.

【详解】解:①以点A为停靠点,则所有人的路程的和=15x100+10x300=1(米),

②以点8为停靠点,则所有人的路程的和=30x100+10x200=5000(米),

③以点C为停靠点,则所有人的路程的和=30x300+15x200=12000(米),

④当在AS之间停靠时,设停靠点到A的距离是/»,则(0<∕M<100),则所有人的路程的和是:30,"+15(100-∕n)

+10(300-7«)=1+5"Z>1,

⑤当在BC之间停靠时,设停靠点到8的距离为",则(0<n<200),则总路程为30(100+n)+15M+10(200-n)=

5000+35∕ι>l.

.∙.该停靠点的位置应设在点4

故选A.

【点睛】

此题为数学知识的应用,考查知识点为两点之间线段最短.

4、B

【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样

本容量则是指样本中个体的数目.

【详解】本题的样本是1名学生的视力情况,故样本容量是1.

故选B.

【点睛】

此题考查总体、个体、样本、样本容量,解题关键在于掌握其定义.

5、C

【分析】设点。落在BC的三等分点为D。分两种情形①当DlT=gBC时,②当D,C=gBC时,分别求解

33

【详解】解:①当D,B,=gBC时,

:BC=6,将纸片折叠,使BC落在CO边上,8'为8的对应点,

二BC=6,

Y将长方形ADBE以BZ为折痕向右折叠,点。落在BC的三等分点上,

1.

ΛDBr=DrBr=-βC=2,

3

ΛCD=DBr+BC=8;

②当D,C≈-BC时,

3

B

VBC=6,将纸片折叠,使BC落在CD边上,方为3的对应点,

,BC=6,

T将长方形ADBE以BZ为折痕向右折叠,点。落在BC的三等分点上,

1.

ΛD,C=-BC=2,

3

ΛDB,=D,B,=BC-D,C=4,

ΛCD=DB,+βC=I-

综上,CD的长为8或1.

故选:C.

【点睛】

本题考查图形的翻折变换,矩形的性质等知识,解题的关键是理解题意,学会由分类讨论的思想思考问题.

6、D

【分析】将X=T代入方程,即可得出。的值.

【详解】将X=T代入方程,得

—«+2=0

"-a—2

故选:D.

【点睛】

此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.

7、A

【解析】•••长方形的周长是30,

.∙.相邻两边的和是15,

T一边是X,

,另一边是15-x,

.∙.面积是:X(15-x),

故选A.

【点睛】本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另

一边的长.

8、A

【分析】A、根据图形可得出两角都为45。的邻补角,可得出两角相等;

B、根据图形可得出两角之和为90。,可得出两角互余;

C、根据图形可得出为NC为45。,N/?为60。,两角不等;

D、根据图形可得出NX?-/。=30°,两角不等;

【详解】A、根据图形得:Na=I80。一45°=135。,N∕J=180°-45°=135°,两角相等,符合题意;

B、根据图形得:Za+Z∕7=90o,两角互余,不符合题意;

C、根据图形可得:Na=90。-45。=45。,N£=90。-30。=60。,两角不等,不符合题意;

D、根据图形可得:90°-N∕7=6O°-Nα,即/月一Na=30。,两角不等,不合题意.

故选:A.

【点睛】

本题考查了角的计算,余角与补角,弄清图形中角的关系是解本题的关键.

9、B

【分析】用科学记数法表示较大的数时,一般形式为αχlθ",其中l≤∣α∣<10,〃为整数,据此判断即可.

【详解】解:将1031万用科学记数法可表示为1.031XIO,.

故选B.

【点睛】

此题考查科学记数法的表示方法.科学记数法的表示形式为αX10"的形式,其中l≤H<10,〃为整数,表示时关键

要正确确定«的值以及〃的值.

10、C

【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.

【详解】解:与〃互为相反数,

:・1+b=O,

:∙a=—hf

:.∣α∣=∖b∖,

故A、B、D正确,

当α=l时,b=-∖,贝L=I,α=网;

当α=T时,b=∖,贝!|同=1,.∙.α≠M∣,故C不一定正确,

故选:C.

【点睛】

本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.

二、填空题(本大题共有6小题,每小题3分,共18分)

11、-2

【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=O(a,b

是常数且a/)).根据一元一次方程的定义可得,ImH=I且m-2≠0,即可得m=-2.

7

12>一

4

【分析】根据分式基本性质,分子和分母同时除以Xy可得.

r洋4213x—2xy+3y_(3x-2xy+3y)÷xy_yX_yX

x+盯+y(x+孙+y)÷孙l+1+ll+I+1

若9,

则3龙一2孙+3y9—27

x+xy+y44

7

故答案为:-

4

【点睛】

考核知识点:分式基本性质运用.熟练运用分式基本性质是关键.

13、12,20,4,1

【分析】设相等数为X,分别求出每一个数,利用四个数和100,构造一元一次方程,解方程,利用相等数求出每一个

数即可.

【详解】设这个相等的数为X,

则第一个数为:X-4,第二个数为:X+4,第三个数为:-X,第四个数为:4x,

4

根据题意得:x-4+x+4+—x+4x=100,

解得x=16,

经检验符合题意,

则四个数分别为12,20,4,1.

故答案为:12,20,4,1.

【点睛】

本题考查数字问题的一元一次方程的应用题,掌握数字问题的分析与设元,及其解题步骤,会列出每个数的代数式,

抓住四数之和100构造方程是解题关键.

14、8x-0.25=7x+0.25.

【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多得出等式求出答案.

【详解】解:设她们采摘用了X小时,根据题意可得:

8x-0.25=7x+0.25,

故答案为:8x-0.25=7x+0.25

【点睛】

此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键.

15、-2

【分析】根据题意,列出一元一次方程,然后解一元一次方程,即可得到答案.

【详解】解:根据题意,得

2x-l=4x+3,

解得:x=—2;

故答案为:-2.

【点睛】

本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤和方法.

16、≡;Ξ.

【分析】利用多项式次数、项数、系数的确定方法、常数项的确定方法得出答案.注意万是常数,不是字母.

7

【详解】解:关于a,b的多项式2/—万/8+一〃有三项,其中最高次项为一万次数为3次.

2

7

12

故多项式2片—πab+-b是三次三项式.

2

故答案为:三;三.

【点睛】

此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.

三、解下列各题(本大题共8小题,共72分)

17、(1)1;(2)-13;(3)-12;(4)2b-a.

【分析】(I)根据乘法的分配律计算即可;

(2)先算乘方,再算乘法,后算加减法;

(3)先算乘方,再算乘除,后算加减法;

(4)先去括号,再合并同类项即可.

【详解】⑴[→∣-∣j×(-i2)

=』x(-12)+1x(T2)—;X(—12)

4v76

=-3-2+6

=1;

(2)(-l)2-5×(-2)2+6

=1-20+6

=-13;

(3

⑶(z-3)9七x∣-6÷

7

=9.%<"6』

8927

(4)(—Q.cib+34)—2(2a—∕?)+2ab

=-2ab+3a-4a+2h+2ab

=2b-a.

【点睛】

本题考查了有理数的混合运算及整式的加减运算,熟练掌握有理数及整式的运算法则是解答本题的关键.

18、(1)ZXABC是直角三角形,理由详见解析;(2)1.

【解析】(1)根据勾股定理求出AB.BC及AC的长,再根据勾股定理的逆定理来进行判断即可.

(2)用直角三角形的面积,即可得出结果;

【详解】(1)A43C是直角三角形,理由如下:

由勾股定理可得:AC2=l2+82=65,BC2=42+62=52,AB2=32+22=l,

:.AB1+BC1=AC;1,

.∙.∆ABC是直角三角形.

(2)VBC2=42+62=52,AB2=32+22=1,

ΛBC=2√B4B=√i3,

Λ∆ABC的面积=Jx2√i5x√i5=l.

【点睛】

本题考查了勾股定理、三角形面积的计算、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解决问题(1)

的关键.

2

、;

19(1)lab+4a-8(1)b=-i(3)b=-1.

3

【分析】(1)原式去括号合并即可得到结果;

(1)由“与》互为倒数得到而=1,代入(1)结果中计算求出b的值即可;

(3)根据(D的结果确定出b的值即可.

【详解】解:(1)原式=34∣+6∕>∣+6αZ>-11-3al-6⅛'-4ab+4a+4=lab+4a-8;

(1)Vα,b互为倒数,

.∖ab=l,

:.l+4α-8=0,

解得:a=1.5,

2

:.b=­;

3

(3)由(1)得:原式=IazH∙4α-8=(Ib+4)a-8,

由结果与Q的值无关,得到16+4=0,

解得:b=-1.

【点睛】

此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则.

9

20、(l)x=l(2)X=—

11

【解析】试题分析:(1)方程去括号,移项合并,把X系数化为1,即可求出解;

(2)方程去分母,去括号,移项合并,把X系数化为1,即可求出解.

试题解析:解:(1)去括号得:4+3x-6=X,移项合并得:2x=2,解得:X=1;

9

(2)去分母得:Sx-2=6-3x+l,移项合并得:llx=9,解得:x=-.

点睛:本题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.

2019224

21、(1)一,—;(2)(3)

5620202019

【分析】(D分子是1,分母是两个连续奇数的乘积,等于分子是1,两个连续数为分母的分数差,由此规律解决;

(2)利用发现的规律拆项相互抵消计算即可.

(3)利用发现的规律拆项相互抵消计算即可.

【详解】解:(1)第1个等式:4=,=!—=;第2个等式:4=」=1—!;

1×212^2x323

第3个等式:

第5个等式:

5×656

故答案为:

(2)4+出+%+T^2+2^3+3^4++2019^2020

2019

2020

(3)1--------1---------F.......H----------------

3×66×99×122016x2019

1fl11111)

3(366920162019J

二3。(7201j

1672

=­X------

32019

_224

^2019,

【点睛】

此题考查数字的变化规律,找出算式之间的联系,发现规律解决问题.

【分析】根据点E、F分别是线段的中点,可推导得到CE+CF=EF,从而得到EF与AB的关系,进而求得EF的长.

【详解】点E,点尸分别是线段AC和线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论