版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
压轴小题05一文搞定平面向量疑难问题压轴压轴秘籍1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.(1).基底e1,e2必须是同一平面内的两个不共线向量,零向量不能作为基底.(2)基底给定,同一向量的分解形式唯一.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.应用平面向量基本定理应注意的问题只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加、减运算或数乘运算.形如条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知为不共线的两个向量,则对于向量,必存在,使得。则三点共线当,则与位于同侧,且位于与之间当,则与位于两侧时,当,则在线段上;当,则在线段延长线上(2)已知在线段上,且,则3、中确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”字型图完成向量的表示,进而确定(2)若题目中某些向量的数量积已知,则对于向量方程,可考虑两边对同一向量作数量积运算,从而得到关于的方程,再进行求解(3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于的方程,再进行求解4.平面向量系数和如图,为所在平面上一点,过作直线,由平面向量基本定理知:存在,使得下面根据点的位置分几种情况来考虑系数和的值=1\*GB3①若时,则射线与无交点,由知,存在实数,使得而,所以,于是=2\*GB3②若时,(i)如图1,当在右侧时,过作,交射线于两点,则,不妨设与的相似比为由三点共线可知:存在使得:所以(ii)当在左侧时,射线的反向延长线与有交点,如图1作关于的对称点,由(i)的分析知:存在存在使得:所以于是综合上面的讨论可知:图中用线性表示时,其系数和只与两三角形的相似比有关。我们知道相似比可以通过对应高线、中线、角平分线、截线、外接圆半径、内切圆半径之比来刻画。因为三角形的高线相对比较容易把握,我们不妨用高线来刻画相似比,在图中,过作边的垂线,设点在上的射影为,直线交直线于点,则(的符号由点的位置确定),因此只需求出的范围便知的范围5.极化恒等式恒等式右边有很直观的几何意义:向量的数量积可以表示为以这两个向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的,恒等式的作用在于向量的线性运算与数量积之间的联系如图在平行四边形中,则在上述图形中设平行四边形对角线交于点,则对于三角形来说:极化恒等式的适用条件共起点或共终点的两向量的数量积问题可直接进行转化(2)不共起点和不共终点的数量积问题可通过向量的平移,等价转化为共起点或共终点的两向量的数量积问题在确定求数量积的两个向量共起点或共终点的情况下,极化恒等式的一般步骤如下第一步:取第三边的中点,连接向量的起点与中点;第二步:利用极化恒等式公式,将数量积转化为中线长与第三边长的一半的平方差;第三步:利用平面几何方法或用正余弦定理求中线及第三边的长度,从而求出数量积如需进一步求数量积范围,可以用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围)。6.奔驰定理如图,已知P为内一点,则有.由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.7.奔驰定理的证明如图:延长与边相交于点则8.奔驰定理的推论及四心问题推论是内的一点,且,则有此定理可得三角形四心向量式(1)三角形的重心:三角形三条中线的交点叫做三角形的重心,重心到顶点的距离与重心到对边中点的距离之比为2:1.(2)三角形的垂心:三角形三边上的高的交点叫做三角形的垂心,垂心和顶点的连线与对边垂直.(3)三角形的内心:三角形三条内角平分线的交点叫做三角形的内心,也就是内切圆的圆心,三角形的内心到三边的距离相等,都等于内切圆半径r.(4)三角形的外心:三角形三条边的垂直平分线的交点叫做三角形的外心,也就是三角形外接圆的圆心,它到三角形三个顶点的距离相等.奔驰定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.已知点在内部,有以下四个推论:①若为的重心,则;②若为的外心,则;或③若为的内心,则;备注:若为的内心,则也对.④若为的垂心,则,或研究三角形“四心”的向量表示,我们就可以把与三角形“四心”有关的问题转化为向量问题,充分利用平面向量的相关知识解决三角形的问题,这在一定程度上发挥了平面向量的工具作用,也很好地体现了数形结合的数学思想.压轴训练压轴训练一、单选题1.(2023春·江苏镇江·高三校考开学考试)已知平面向量满足,且,则的最大值为(
)A. B. C. D.【答案】D【分析】根据题意,求出,建立平面直角坐标系,设,求出轨迹方程,利用几何意义即可求出的最大值.【详解】由可知,,故,如图建立坐标系,,,设,由可得:,所以的终点在以为圆心,1为半径的圆上,所以,几何意义为到距离的2倍,由儿何意义可知,故选:D.2.(2022·江苏镇江·扬中市第二高级中学校考模拟预测)已知与为单位向量,且⊥,向量满足,则||的可能取值有(
)A.6 B.5 C.4 D.3【答案】D【分析】建立平面直角坐标系,由向量的坐标计算公式可得,进而由向量模的计算公式可得,分析可得在以为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案.【详解】根据题意,设,,,以为坐标原点,的方向为轴正方向,的方向为轴的正方向建立坐标系,则,,设,则,若,则有,则在以为圆心,半径为2的圆上,设为点,则,则有,即,则的取值范围为;故选:D.3.(2023秋·江苏南京·高三南京市第一中学校考期末)已知是面积为的等边三角形,四边形是面积为2的正方形,其各顶点均位于的内部及三边上,且可在内任意旋转,则的最大值为(
)A. B. C. D.【答案】D【分析】先分别求出等边三角形和正方形的边长及其内切圆半径,根据所求结果和正方形可在内任意旋转可知,正方形各个顶点在三角形的内切圆上,建立合适的直角坐标系,求出三角形的顶点坐标和其内切圆的方程,设出的三角坐标,根据可得到关于坐标中变量的关系,分类讨论代入中化简,用辅助角公式分别求出最大值,选出结果即可.【详解】解:因为是面积为的等边三角形,记边长为,所以,解得,记三角形内切圆的半径为,根据,可得:,解得,因为正方形面积为2,所以正方形边长为,记正方形外接圆半径为,所以其外接圆直径等于正方形的对角线2,即,根据正方形的对称性和等边三角形的对称性可知,正方形外接圆即为等边三角形的内切圆,因为正方形可在内任意旋转,可知正方形各个顶点均在该三角形的内切圆上,以三角形底边为轴,以的垂直平分线为轴建立直角坐标系如图所示:故可知,圆的方程为,故设,,因为,即,化简可得,即,解得或,①当时,点坐标可化为,此时,所以当,即,即,即时,取得最大值;②当时,点坐标可化为,此时,因为,所以当,即,即,即时,取得最大值,综上可知:取得最大值.故选:D【点睛】方法点睛:该题考查平面几何的综合应用,属于难题,关于圆锥曲线中点的三角坐标的设法有:(1)若点在圆上,可设点为,其中;(2)若点在圆上,可设点为,其中;(3)若点在椭圆上,可设点为,其中;4.(2023·江苏镇江·扬中市第二高级中学校考模拟预测)已知直线l1:与l2:相交于点M,线段AB是圆C:的一条动弦,且,则的最小值为(
)A. B. C. D.【答案】A【分析】根据直线所过定点和知,由此得轨迹是以为圆心,为半径的圆(不含点),由垂径定理和圆上点到定点距离最小值的求法求得,结合向量数量积的运算律求得最小值.【详解】由圆的方程知:圆心,半径;由得:,恒过定点;由得:,恒过定点;由直线方程可知:,,即,设,则,,,整理得:,即点的轨迹是以为圆心,为半径的圆,又直线斜率存在,点轨迹不包含;若点为弦的中点,则,位置关系如图:
连接,由知:,则,(当在处取等号),即的最小值为.故选:A.5.(2023·江苏扬州·统考模拟预测)已知向量,满足的动点的轨迹为,经过点的直线与有且只有一个公共点,点在圆上,则的最小值为(
).A. B.C. D.1【答案】A【分析】先求出轨迹的方程,再利用直线与有且只有一个公共点,求出点的坐标,从而得解.【详解】根据,可得,化简得为动点的轨迹的方程为:,设经过点的直线为:,(可判断斜率存在)联立方程,得①,由于直线与有且只有一个公共点,所以,或,得,或,因为圆,圆心,所以当点在轴上方时较小,以下只讨论点在轴上方的情况,当时,代入①式,得,再代入双曲线方程可得,当时,点在圆内,可得的最小值为;当时,代入①式,得,再代入双曲线方程可得则,当时,点在圆外,可得的最小值为;则的最小值为.故选:A【点睛】方法点睛:求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.6.(2022·江苏盐城·江苏省滨海中学校考模拟预测)AB为⊙C:(x-2)2+(y-4)2=25的一条弦,,若点P为⊙C上一动点,则的取值范围是(
)A.[0,100] B.[-12,48] C.[-9,64] D.[-8,72]【答案】D【分析】取AB中点为Q,利用数量积的运算性质可得,再利用圆的性质可得取值范围,即求.【详解】取AB中点为Q,连接PQ,,又,,∵点P为⊙C上一动点,∴的取值范围[-8,72].故选:D.7.(2022秋·江苏南通·高三统考开学考试)已知锐角满足,且O为的外接圆圆心,若,则的取值范围为(
)A. B. C. D.【答案】A【分析】由题意可得,将平方整理得,设,则有,再设,则有==,求解即可.【详解】解:如图所示:由正弦定理可得:,所以,在中,由余弦定理可得,又因为,所以.又因为,所以,即有:,即,所以,设,可得,又因为为锐角三角形,所以,所以,设,则有,所以==,所以故选:A.8.(2022秋·江苏南通·高三开学考试)在中,,,过的外心O的直线(不经过点)分别交线段于,且,,则的取值范围是(
)A. B.C. D.【答案】B【分析】求得,外接圆的半径,设,,,根据,结合和三点共线,得到,进而求得,利用基本不等式和函数的性质,即可求得取值范围.【详解】因为中,,由余弦定理可得,即,且,设,则,,所以,同理可得,,解得,所以,又因为,,所以,因为三点共线,可得,因为,所以,所以,同理可得,所以所以,设,可得,令,可得,令,解得,当时,,单调递减;当时,,单调递增,所以当时,取得最小值,最小值为;又由,,可得,所以当时,取得最大值,最大值为,所以的取值范围是.故选:B.9.(2022秋·江苏泰州·高三姜堰中学校联考阶段练习)已知平面向量满足对任意都有成立,且,则的值为(
)A.1 B. C.2 D.【答案】A【分析】设,,即可得到,,设平面向量共起点,从而得到其平面图形,由余弦定理求出,从而求出,即可得解.【详解】解:设,,则,因为任意都有,故是向量的模的最小值,故是的最小值即,即,同理,设平面向量共起点,因为,故的终点在的终点的中垂线上,故的终点和起点可构成如下图形:因为,故,而,则,所以,因,,故,,,四点共圆(据此可得,在直径的同侧,否则与矛盾),故,所以;故选:A.10.(2022秋·江苏盐城·高三统考期中)已知点,及圆上的两个动点C、D,且,则的最大值是(
)A.6 B.12 C.24 D.32【答案】C【分析】求出两点坐标,设,计算,由弦的中点在以原点为圆心3为半径的圆上,求得圆方程,然后用三角换元法化为三角函数式,利用和与差的正弦公式化简后可得最大值.【详解】,,,,,同理,,,设,,,则中点到圆心的距离为,中点的轨迹方程为,中点在上,∴,令(),,时等号成立,故选:C.【点睛】本题考查平面向量数量积的坐标表示,解题关键是确定中点在圆上,这样可用元法把与用一个变量表示,把与之有关的问题转化为三角函数问题求解.本题才学生运算求解能力要求较高,属于难题.11.(2022·江苏盐城·模拟预测)在中,内角A,B,C的对边分别是a,b,c,,,,则线段CD长度的最小值为(
)A.2 B. C.3 D.【答案】D【分析】本题通过正弦定理得到,再通过余弦定理得到,对向量式整理得,通过平方,将向量关系转化为数量关系即,利用基本不等式即可求解.【详解】解:由及正弦定理,得,即,由余弦定理得,,∵,∴.由,,两边平方,得即,当且仅当,即时取等号,即,∴线段CD长度的最小值为.故选:D.12.(2022秋·江苏苏州·高三苏州中学校联考阶段练习)在中,,,,点在该三角形的内切圆上运动,若(,为实数),则的最小值为(
)A. B. C. D.【答案】B【分析】由可得,再结合余弦定理,面积公式可求出、、边上高,内切圆半径,最后根据平行线等比关系即可求解.【详解】,由在内切圆上,故,假设,由于,,则,且为上一点,,,三点共线,由平行线等比关系可得,要使,即与之间的比例最小,则在内切圆的最高点,如图所示,由,因为,所以,设边上高为,内切圆半径为,由,所以,,可得的最小值为,故选:B.【点睛】关键点点睛:这道题关键的地方是转化得到,令,观察到分母的系数相加为1,则可得到为上一点,再结合平行线等比关系以及图象可得到比例最小的具体位置13.(2023·江苏常州·校考一模)已知、是椭圆的左、右焦点,点是椭圆上任意一点,以为直径作圆,直线与圆交于点(点不在椭圆内部),则A. B.4 C.3 D.1【答案】C【分析】利用向量的数量积运算可得,利用,进一步利用椭圆的定义可转化为,进而得解.【详解】连接,设椭圆的基本量为,,故答案为:3.【点睛】本题考查椭圆的定义与平面向量的数量积的运算,属中档题,关键是利用向量的数量积运算进行转化,并结合椭圆的定义计算.14.(2023秋·江苏·高三校联考阶段练习)在中,,,E是AB的中点,EF与AD交于点P,若,则(
)A. B. C. D.1【答案】A【分析】利用向量的线性运算求得,由此求得m,n,进而求得.【详解】因为,所以,则.因为A,P,D三点共线,所以.因为,所以.因为E是边AB的中点,所以.因为E,P,F三点共线,所以,则,解得,从而,,故.故选:A二、多选题15.(2023春·江苏南京·高三南京市第二十九中学校考阶段练习)已知为所在的平面内一点,则下列命题正确的是(
)A.若为的垂心,,则B.若为锐角的外心,且,则C.若,则点的轨迹经过的重心D.若,则点的轨迹经过的内心【答案】ABC【分析】根据,计算可判断A;设为中点,则根据题意得三点共线,且,进而得判断B;设中点为,进而结合正弦定理得可判断C;设中点为,根据题意计算得,进而得可判断D.【详解】解:对于A选项,因为,,又因为为的垂心,所以,所以,故正确;对于B选项,因为且,所以,整理得:,即,设为中点,则,所以三点共线,又因为,所以垂直平分,故,正确;对于C选项,由正弦定理得,所以,设中点为,则,所以,所以三点共线,即点在边的中线上,故点的轨迹经过的重心,正确;对于D选项,因为,设中点为,则,所以,所以,所以,即,所以,故在中垂线上,故点的轨迹经过的外心,错误.故选:ABC16.(2023秋·江苏泰州·高三统考期末)过圆:内一点作两条互相垂直的弦,,得到四边形,则(
)A.的最小值为4B.当时,C.四边形面积的最大值为16D.为定值【答案】ABD【分析】当为中点时最小,即可求出,从而判断A;设到,的距离分别为,,则,求出,即可得到,从而求出,即可判断B;根据利用基本不等式求出四边形面积的最大值,即可判断C;分别取,的中点,,根据数量积的运算律求出的值,即可判断D.【详解】解:当为中点时最小,,,故A正确;设到,的距离分别为,,,∴,又,∴,,故B正确;因为,所以,则,当且仅当时取等号,所以,故C错误.分别取,的中点,,则为定值,故D正确.故选:ABD.17.(2023·江苏南通·校联考模拟预测)已知O为坐标原点,曲线在点处的切线与曲线相切于点,则(
)A. B.C.的最大值为0 D.当时,【答案】AB【分析】先利用导数几何意义求出切线方程,利用切线斜率和截距相等建立方程,然后利用指对互化判断A、B,由数量积坐标运算化简,判断函数值符号即可判断C,构造函数,利用导数法研究函数的单调性,判断D【详解】因为,所以,又,所以,切线:,即,因为,所以,又,所以,切线:,即,由题意切线重合,所以,所以,即,A正确;当时,两切线不重合,不合题意,所以,,,所以,,B正确;,当时,,,则,当时,,,则,,所以,C错误;设,则,所以函数在上单调递增,所以,所以,所以,∴,记,则,所以函数在上单调递增,则,所以,D错误.故选:AB【点睛】关键点点睛:本题需要表示出两条切线方程,然后比较系数,再进行代换,在代换过程中要尽量去消去指数或对数,朝目标化简.18.(2022秋·江苏苏州·高三校联考阶段练习)在△中,内角所对的边分别为a、b、c,则下列说法正确的是(
)A.B.若,则C.D.若,且,则△为等边三角形【答案】ACD【分析】A由正弦定理及等比的性质可说明;B令可得反例;C由和角正弦公式及三角形内角和的性质有,由正弦定理即可证;D若,,根据单位向量的定义,向量加法的几何意义及垂直表示、数量积的定义易知△的形状.【详解】A:由,根据等比的性质有,正确;B:当时,有,错误;C:,而,即,由正弦定理易得,正确;D:如下图,是单位向量,则,即、,则且平分,的夹角为,易知△为等边三角形,正确.故选:ACD【点睛】关键点点睛:D选项,注意应用向量在几何图形中所代表的线段,结合向量加法、数量积的几何意义判断夹角、线段间的位置关系,说明三角形的形状.19.(2022秋·江苏南通·高三统考阶段练习)在平面直角坐标系中,O是坐标原点,是圆上两个不同的动点,是的中点,且满足.设到直线的距离之和的最大值为,则下列说法中正确的是(
)A.向量与向量所成角为B.C.D.若,则数列的前n项和为【答案】ACD【分析】对于A,用与表示,结合给定向量等式计算判断;对于B,求出的值即可判断;对于C,转化为点到直线距离最大值并计算判断;对于D,求出数列的通项,代入并利用裂项相消法计算判断作答.【详解】依题意,,而点是弦的中点,则,,而,于是得,,即,A正确;显然是顶角的等腰三角形,则,B不正确;依题意,点到直线的距离之和等于点到直线距离的2倍,由知,点在以原点O为圆心,为半径的圆上,则点到直线距离的最大值是点O到直线的距离加上半径,而点O到直线距离,则点到直线距离的最大值是,因此,,C正确;由得,,则,因此,数列的前n项和,D正确.故选:ACD20.(2023秋·江苏南京·高三南京外国语学校校考阶段练习)半圆形量角器在第一象限内,且与轴、轴相切于、两点.设量角器直径,圆心为,点为坐标系内一点.下列选项正确的有(
)
A.点坐标为 B.C. D.若最小,则【答案】ACD【分析】根据题意,结合平面向量的运算以及坐标运算,对选项逐一判断,即可得到结果.【详解】由题意得,量角器与轴、轴相切于、两点,且,则,故A正确;由A可知,,则,则,故B错误;记,则C选项,故C正确;设,则,当时,,故D正确;故选:ACD21.(2022秋·江苏扬州·高三统考阶段练习)已知向量.则下列命题正确的是(
)A.若,则 B.存在,使得C.与共线的单位向量为 D.向量与夹角的余弦值范围是【答案】ABD【分析】对于A,由特殊角的三角函数值与的取值范围可得到,故A正确;对于B,利用向量的数量积运算由易得,从而得到,故,即说法成立,故B正确;对于C,利用易求得与共线的单位向量有两个,故C错误;对于D,利用向量数量积运算求得夹角的余弦值的表达式,结合三角函数的图像即可得到其取值范围是,故D正确.【详解】对于A,由题意得,又,故,故A正确;对于B,因为,即,即,整理得,即,故,即,得,又,所以,即存在,使得,故B正确;对于C,因为,所以,故与共线的单位向量为,故C错误;对于D,,又,所以,所以,即向量与夹角的余弦值范围是,故D正确.故选:ABD.三、填空题22.(2023秋·江苏苏州·高三常熟中学校考期末)已知是平面向量,与是单位向量,且,若,则的最小值为.【答案】【分析】把条件的二次方程分解成两个向量的积,得到这两个向量互相垂直,结合图形确定的最小值.【详解】如下图所示,设且点B在以F为圆心,DE为直径的圆上又当点B为圆F和线段FA的交点的时候,最短故答案为:23.(2022·江苏南京·统考模拟预测)平面向量,,满足,,,则.【答案】/【分析】数形结合,利用题干条件及正余弦定理求出答案.【详解】可变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省建筑安全员B证考试题库
- 2025年安徽建筑安全员-C证考试题库
- 2025黑龙江省建筑安全员-A证考试题库及答案
- 《急腹症诊治原则》课件
- 酸碱盐复习课件浙教版
- 《手机视频转换》课件
- 单位管理制度展示大全【人员管理】十篇
- 车钩缓冲器拆装器行业深度研究报告
- 单位管理制度展示汇编【职工管理篇】十篇
- 单位管理制度收录大全【人力资源管理篇】
- 机动车查验员技能理论考试题库大全-上(单选题部分)
- 监理人员安全生产培训
- 2024-2030年中国电力检修行业运行状况及投资前景趋势分析报告
- 河北省百师联盟2023-2024学年高二上学期期末大联考历史试题(解析版)
- 中央空调系统运行与管理考核试卷
- 核电工程排水隧道专项施工方案
- 2021年四川省凉山州九年级中考适应性考试理科综合(试卷)
- 骨科疼痛的评估及护理
- 民办学校招生教师培训
- 【MOOC】概率论与数理统计-南京邮电大学 中国大学慕课MOOC答案
- 2024年度软件开发分包合同技术要求与交底2篇
评论
0/150
提交评论