压轴大题12 数据分析解决概率与统计综合问题(解析版)_第1页
压轴大题12 数据分析解决概率与统计综合问题(解析版)_第2页
压轴大题12 数据分析解决概率与统计综合问题(解析版)_第3页
压轴大题12 数据分析解决概率与统计综合问题(解析版)_第4页
压轴大题12 数据分析解决概率与统计综合问题(解析版)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

压轴大题12数据分析解决概率与统计综合问题压轴压轴秘籍数字样本特征众数:在一组数据中出现次数最多的数中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数平均数:,反映样本的平均水平方差:反映样本的波动程度,稳定程度和离散程度;越大,样本波动越大,越不稳定;越小,样本波动越小,越稳定;标准差:,标准差等于方差的算术平方根,数学意义和方差一样极差:等于样本的最大值最小值求随机变量X的分布列的步骤:(1)理解X的意义,写出X可能取得全部值;(2)求X取每个值的概率;(3)写出X的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量的期望、方差,求的期望与方差,利用期望和方差的性质(,)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若~,则,.4.求解概率最大问题的关键是能够通过构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算的值;(2)计算回归系数;(3)写出回归直线方程.线性回归直线方程为:,,其中为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱),正相关;,负相关独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:压轴训练压轴训练一、解答题1.(2023秋·江苏南京·高三南京外国语学校校考阶段练习)某市正在创建全国文明城市,学校号召师生利用周末从事创城志愿活动.高三(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择.每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为.每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.【答案】(1)(2)【分析】(1)根据条件概率的计算公式即可求得答案;(2)方法一:根据女生参加活动的人数确定变量的可能取值,计算每个取值对应的概率,可得变量的分布列,即可求得期望;方法二:分别计算出一名女生和一名男生参加活动可获得分数的期望,设恰有Y名女生参加活动,则男生有名参加活动,,计算出变量Y的期望,即可求X的期望.【详解】(1)设“有女生参加活动”为事件A,“恰有一名女生参加活动”为事件B.则,,所以.(2)方法一:“选取的两人中女生人数为i”记为事件,,则,,.由题意知X的可能值为,“得分为分”分别记为事件,,,,,则,,;,,;,,.;;;;,所以X的分布列为X2030405060P所以.方法二:根据题意,一名女生参加活动可获得分数的期望为,一名男生参加活动可获得分数的期望为.设恰有Y名女生参加活动,则男生有名参加活动,,则,,.所以Y的分布列为Y012P则有,所以.【点睛】难点点睛:本题考查了条件概率的计算,比较基础,第二问考查随机变量的期望的求解,求解的思路并不困难,但难点在于要根据变量的取值的可能情况,计算每种情况相应的概率,计算较复杂,计算量较大,需要思维缜密,计算仔细。2.(2023秋·江苏连云港·高三校考阶段练习)甲乙两人进行乒乓球比赛,经过以往的比赛分析,甲乙对阵时,若甲发球,则甲得分的概率为,若乙发球,则甲得分的概率为.该局比赛中,甲乙依次轮换发球(甲先发球),每人发两球后轮到对方进行发球.(1)求在前4球中,甲领先的概率;(2)12球过后,双方战平,已知继续对战奇数球后,甲获得胜利(获胜要求至少取得11分并净胜对方2分及以上).设净胜分(甲,乙的得分之差)为X,求X的分布列.【答案】(1)(2)答案见解析【分析】(1)分别求出甲与乙的比分是和的概率,即可得答案;(2)依题意,甲或获胜,即在接下来的比赛中,甲乙的比分为5:0或5:2,且最后一球均为甲获胜,分别求出5:0和5:2的概率,即可得X的分布列.【详解】(1)解:甲与乙的比分是的概率为比分是的概率为,故前4球中,甲领先的概率(2)解:依题意,接下来由甲先发球.继续对战奇数球后,甲获得胜利,则甲或获胜,即在接下来的比赛中,甲乙的比分为5:0或5:2,且最后一球均为甲获胜.记比分为5:0为事件A,则,记比分为5:2为事件B,即前6球中,乙获胜两球,期间甲发球4次,乙发球两次,,故依题意甲获胜的概率为X的所有可能取值为3,5,由条件概率有,故X的分布列为X35P3.(2023秋·江苏南通·高三统考阶段练习)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球2n次,且每次取1只球.(1)当时,求恰好取到3次红球的概率;(2)X表示2n次取球中取到红球的次数,,求Y的数学期望(用n表示).【答案】(1)(2)【分析】(1)求出从装有5只小球的口袋中有放回的取球6次,共包含几种情况,再求出恰好取到3次红球的取法种数,根据古典概型的概率公式即可求得答案.(2)确定随机变量Y的所有可能取值,求得的表达式,继而计算,并结合二项式定理化简计算,即可求得答案.【详解】(1)当时,从装有5只小球的口袋中有放回的取球6次,共包含种情况.记“恰好取到3次红球”为事件A,事件A包含种情况,故即当时,恰好取到3次红球的概率为(2)由题意知,随机变量Y的所有可能取值为0,1,3,5,…,,则,则所以,令,,则,,所以,所以,故Y的数学期望为.【点睛】关键点睛:求解随机变量Y的数学期望时,按照期望的计算公式可得的表达式,关键在于根据该表达式化简求值时,要令,,从而可结合二项式定理求出结果.4.(2022·江苏盐城·江苏省滨海中学校考模拟预测)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是,乙每轮投中的概率是;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率;(2)①设“虎队”两轮得分之和为,求的分布列;②设“虎队”轮得分之和为,求的期望值.(参考公式)【答案】(1);(2)①答案见解析;②.【解析】(1)设甲、乙在第轮投中分别记作事件,,“虎队”至少投中3个记作事件,根据相互独立事件的概率公式,即可求解.(2)①“虎队”两轮得分之和的可能取值为:0,1,2,3,4,6,求得相应的概率,得到分布列;②得到,求得相应的概率,结合期望的公式,即可求解.【详解】(1)设甲、乙在第轮投中分别记作事件,,“虎队”至少投中3个记作事件,则.(2)①“虎队”两轮得分之和的可能取值为:0,1,2,3,4,6,则,,,,,.故的分布列如下图所示:012346②,,,,∴,.【点睛】本题主要考查了相互独立事件的概率计算,以及离散型随机变量的分布列及数学期望,其中解答中熟记相互独立事件概率的计算公式,以及求得随机变量取值的概率,得到分布列是解答的关键,着重考查分析问题和解答问题的能力.5.(2022秋·江苏淮安·高三马坝高中校考阶段练习)某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为,乙笔试部分每个环节通过的概率依次为,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为,,乙面试部分每个环节通过的概率依次为,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立.(1)求乙未能参与面试的概率;(2)记甲本次应聘通过的环节数为,求的分布列以及数学期望;(3)若该校仅招聘1名在职教师,试通过概率计算,判断甲、乙两人谁更有可能入职.【答案】(1);(2)分布列答案见解析,数学期望:;(3)甲更可能成为该校的在职教师.【分析】(1)根据事件的互斥性及每一次是否通过相互独立求解即可;(2)首先确定随机变量的可能取值,再分别求出相应的概率值,列出分布列计算数学期望;(3)分别计算甲乙通过成为在职教师的概率值,比较大小,得出结论.【详解】(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙未能参与面试的概率.(2)的可能取值为0,1,2,3,4,5,,,,,,.则的分布列为012345故.(3)由(2)可知,甲成为在职教师的概率,乙成为在职教师的概率.因为,所以甲更可能成为该校的在职教师.【点睛】本题考查相互独立事件的概率、离散型随机变量的分布列以及期望.在求解过程中需清楚互斥事件的概率加法计算公式和相互独立事件的概率乘法计算公式,分布列中需要准确计算每个可能取值的概率值,最后计算数学期望.6.(2022秋·江苏常州·高三常州市第三中学校联考阶段练习)某单位在“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每局游戏需投篮3次,若投中的次数多于未投中的次数,该局得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.(1)求甲在一局游戏中投篮命中次数X的分布列与期望;(2)若参与者连续玩局投篮游戏获得的分数的平均值大于2,即可获得一份大奖.现有和两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.【答案】(1)分布列见解析,;(2)甲选择时,获奖的概率更大,理由见解析.【分析】(1)说明,求出概率得到的分布列,然后求解期望.(2)若选择,设局游戏中,得3分的局数为m,推出,求出概率的表达式,推出,则,得到结论.【详解】解:(1)由题意知,则,,,,所以X的分布列为X0123P.(2)由(1)可知在一局游戏中,甲得3分的概率为,得1分的概率为,若选择,此时要能获得大奖,则需次游戏的总得分大于,设局游戏中,得3分的局数为m,则,即.易知,故此时获大奖的概率同理可以求出当,获大奖的概率为因为所以,则答:甲选择时,获奖的概率更大.7.(2022春·江苏扬州·高三扬州中学校考开学考试)公元1651年,法国学者德梅赫向数学家帕斯卡请教了一个问题:设两名赌徒约定谁先赢满4局,谁便赢得全部赌注元,已知每局甲赢的概率为,乙赢的概率为,且每局赌博相互独立,在甲赢了2局且乙赢了1局后,赌博意外终止,则赌注该怎么分才合理?帕斯卡先和费尔马讨论了这个问题,后来惠更斯也加入了讨论,这三位当时欧洲乃至全世界著名的数学家给出的分配赌注的方案是:如果出现无人先赢4局且赌博意外终止的情况,则甲、乙按照赌博再继续进行下去各自赢得全部赌注的概率之比分配赌注.(友情提醒:珍爱生命,远离赌博)(1)若,甲、乙赌博意外终止,则甲应分得多少元赌注?(2)若,求赌博继续进行下去甲赢得全部赌注的概率,并判断“赌博继续进行下去乙赢得全部赌注”是否为小概率事件(发生概率小于的随机事件称为小概率事件).【答案】(1)216元;(2),是小概率事件.【分析】(1)设赌博再继续进行X局且甲赢得全部赌注,则最后一局必然甲赢,由题意知,最多再进行4局,甲、乙必然有人赢得全部赌注,利用相互独立事件概率乘法公式和互斥事件概率加法公式求出甲赢的概率,由此能求出甲应分得的赌注.(2)设赌博继续进行Y局乙赢得全部赌注,则最后一局必然乙赢,当时,乙以赢,,当时,乙以赢,,求出甲赢得全部赌注的概率对其求导,利用导数分析单调性,求出该函数的最小值,从而判断出“赌博继续进行下去乙赢得全部赌注”是小概率事件.【详解】(1)设赌博再继续进行局且甲赢得全部赌注,则最后一局必然甲赢由题意知,最多再进行4局,甲、乙必然有人赢得全部赌注.当时,甲以赢,所以;当时,甲以赢,所以;当时,甲以赢,所以.所以,甲赢的概率为.所以,甲应分得的赌注为元(2)设赌注继续进行局乙赢得全部赌注,则最后一局必然乙赢,则的可能取值有3、4,当时,乙以赢,;当时,乙以赢,;所以,乙赢得全部赌注的概率为于是甲赢得全部赌注的概率求导,.因为所以所以在上单调递增,于是.故乙赢的概率最大为故是小概率事件.8.(2023·江苏无锡·辅仁高中校联考模拟预测)互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量,样本平均数,样本方差;乙镇的样本容量,样本平均数,样本方差.(1)求由两镇样本组成的总样本的平均数及其方差;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为,当比赛在乙镇举行时,甲镇代表队获胜的概率为.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X,求.参考数据:.【答案】(1),(2)【分析】(1)利用平均数的计算公式求得,再利用方差的计算公式进行转化求解即可得解;(2)先根据题意得到的所有可能取值,再利用独立事件的概率公式分别求得各个取值的概率,从而利用数学期望的计算公式即可得解.【详解】(1)根据题意,得,因为,同理,所以,所以总样本的平均数为,方差.(2)依题意可知,的所有可能取值为,设“第场比赛在甲镇举行,甲镇代表队获胜”为事件,“第场比赛在乙镇举行,甲镇代表队获胜”为事件,则,所以,,,所以.9.(2022·江苏连云港·江苏省赣榆高级中学校考模拟预测)某超市开展购物抽奖送积分活动,每位顾客可以参加(,且)次抽奖,每次中奖的概率为,不中奖的概率为,且各次抽奖相互独立.规定第1次抽奖时,若中奖则得10分,否则得5分.第2次抽奖,从以下两个方案中任选一个;方案①:若中奖则得30分,否则得0分;方案②:若中奖则获得上一次抽奖得分的两倍,否则得5分.第3次开始执行第2次抽奖所选方案,直到抽奖结束.(1)如果,以抽奖的累计积分的期望值为决策依据,顾客甲应该选择哪一个方案?并说明理由;(2)记顾客甲第i次获得的分数为,并且选择方案②.请直接写出与的递推关系式,并求的值.(精确到0.1,参考数据:.)【答案】(1)应选择方案①,理由见解析;(2),【分析】(1)分别求得两个方案的累计积分的期望值即可进行选择;(2)依据题给条件即可求得的值.【详解】(1)若甲第2次抽奖选方案①,两次抽奖累计积分为,则的可能取值为40,35,10,5.

,,,,所以.

若甲第2次抽奖选方案②,两次抽奖累计积分为,则的可能取值为30,15,10,则,,,,

因为,所以应选择方案①.(2)依题意得,

的可能取值为10,5其分布列为105P所以,则,

由得,

所以为等比数列.其中首项为,公比为.

所以,故.10.(2022·江苏南京·高三金陵中学校考学业考试)规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;(2)为验证抽球试验成功的概率不超过,有1000名数学爱好者独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如下:1234523298604020求关于的回归方程,并预测成功的总人数(精确到1);(3)证明:.附:经验回归方程系数:,;参考数据:,,(其中,).【答案】(1)分布列见解析,数学期望为(2)回归方程为,预测成功的总人数为465(3)证明见解析【分析】(1)结合相互独立、独立重复试验的概率计算公式,计算出分布列并求得数学期望.(2)利用换元法,结合回归直线方程的计算公式,计算出关于的回归方程,并由求得预测值.(3)通过求“在前轮没有成功的概率”大于,来求得“前轮就成功的概率”小于,从而证得不等式成立.【详解】(1)由题知,的取值可能为1,2,3所以;;;所以的分布列为:123所以数学期望为.(2)令,则,由题知:,,所以,所以,,故所求的回归方程为:,所以,估计时,;估计时,;估计时,;预测成功的总人数为.(3)由题知,在前轮就成功的概率为又因为在前轮没有成功的概率为,故.11.(2023秋·江苏南通·高三江苏省如皋中学校考阶段练习)现代排球赛为5局3胜制,每局25分,决胜局15分.前4局比赛中,一队只有赢得至少25分,并领先对方2分时,才胜1局.在第5局比赛中先获得15分并领先对方2分的一方获胜.在一个回合中,赢的球队获得1分,输的球队不得分,且下一回合的发球权属于获胜方.经过统计,甲、乙两支球队在每一个回合中输赢的情况如下:当甲队拥有发球权时,甲队获胜的概率为;当乙队拥有发球权时,甲队获胜的概率为.(1)假设在第1局比赛开始之初,甲队拥有发球权,求甲队在前3个回合中恰好获得2分的概率;(2)当两支球队比拼到第5局时,两支球队至少要进行15个回合,设甲队在第个回合拥有发球权的概率为.假设在第5局由乙队先开球,求在第15个回合中甲队开球的概率,并判断在此回合中甲、乙两队开球的概率的大小.【答案】(1)(2),甲队开球的概率大于乙队开球的概率.【分析】(1)甲队在前3个回合中恰好获得2分,分为3种情况,依次求出对应的概率,即可求解;(2)根据已知条件,结合等比数列的性质,以及全概率公式,即可求解.【详解】(1)在前3个回合中甲队恰好获得2分对应的胜负情况如下:胜胜负,胜负胜,负胜胜,共3种情况,对应的概率分别为,,,所以甲队在前3个回合中恰好获得2分的概率;(2)根据全概率公式得,即,易知,所以是以为首项,为公比的等比数列,所以,故,因为,所以,而在每一个回合中,甲、乙两队开球的概率之和为1,从而可得在此回合中甲队开球的概率大于乙队开球的概率.【点睛】方法点睛:甲队在第i个回合拥有发球权的概率为,由全概率公式得,问题转化为数列的递推公式,通过构造等比数列,求出通项.12.(2022·江苏泰州·统考模拟预测)设是一个二维离散型随机变量,它们的一切可能取的值为,其中,令,称是二维离散型随机变量的联合分布列.与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式:………·………………现有个相同的球等可能的放入编号为1,2,3的三个盒子中,记落下第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求的联合分布列;(2)设且计算.【答案】(1)见解析;(2)【分析】(1)由题意知:可取0,1,2,可取0,1,2,直接计算概率,列出的联合分布列即可;(2)直接计算得,结合二项分布的期望公式求出即可.【详解】(1)可取0,1,2,可取0,1,2,则,,,,,,,故的联合分布列为:012012·(2)当时,,故,所以,设服从二项分布,由二项分布的期望公式可得.13.(2022·江苏南通·海安高级中学校考二模)我国某芯片企业使用新技术对一款芯片进行试产,设试产该款芯片的次品率为p(0<p<1),且各个芯片的生产互不影响.(1)试产该款芯片共有两道工序,且互不影响,其次品率依次为,.①求p;②现对该款试产的芯片进行自动智能检测,自动智能检测为次品(注:合格品不会被误检成次品)的芯片会被自动淘汰,然后再进行人工抽检已知自动智能检测显示该款芯片的合格率为96%,求人工抽检时,抽检的一个芯片是合格品的概率.(2)视p为概率,记从试产的芯片中随机抽取n个恰含m(n>m)个次品的概率为,求证:在时取得最大值.【答案】(1)①,②(2)证明见解析【分析】(1)①由题意可知两道生产工序互不影响,利用对立事件可求;②依题意可利用条件概率公式求抽检的一个芯片是合格品的概率;(2)依题意可知,求导后利用导数研究的单调性,即可证明结论成立.【详解】(1)①因为两道生产工序互不影响,法一:所以.法二:所以.答:该款芯片的次品率为;②记该款芯片自动智能检测合格为事件A,人工抽检合格为事件B,且.则人工抽检时,抽检的一个芯片恰是合格品的概率:.答:人工抽检时,抽检的一个芯片恰是合格品的概率为;(2)因为各个芯片的生产互不影响,所以,所.令,得,所以当时,为单调增函数;当时,为单调减函数,所以,当时,取得最大值.14.(2022·江苏南京·南京市江宁高级中学校考模拟预测)2022年2月6日,中国女足在两球落后的情况下,以3比2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为,易知.①试证明为等比数列;②设第n次传球之前球在乙脚下的概率为,比较与的大小.【答案】(1)分布列见解析,(2)①证明见解析;②【分析】(1)先计算门将每次可以扑出点球的概率,再列出其分布列,进而求得数学期望;(2)递推求解,记第n次传球之前球在甲脚下的概率为,则当时,第次传球之前球在甲脚下的概率为,满足.【详解】(1)解析1:分布列与期望依题意可得,门将每次可以扑出点球的概率为,门将在前三次扑出点球的个数X可能的取值为0,1,2,3,,,,,X的分布列为:X0123P期望.(1)解析2:二项分布依题意可得,门将每次可以扑出点球的概率为,门将在前三次扑出点球的个数X可能的取值为0,1,2,3,易知,,.X的分布列为:X0123P期望.(2)解析:递推求解①第n次传球之前球在甲脚下的概率为,则当时,第次传球之前球在甲脚下的概率为,第次传球之前球不在甲脚下的概率为,则,从而,又,∴是以为首项.公比为的等比数列.②由①可知,,,故.15.(2022秋·江苏常州·高三校联考阶段练习)汽车尾气排放超标是全球变暖、海平面上升的重要因素.我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到下面的统计表:年份20172018201920202021年份代码12345销量万辆1012172026(1)统计表明销量与年份代码有较强的线性相关关系,求关于的线性回归方程,并预测该地区新能源汽车的销量最早在哪一年能突破50万辆;(2)为了解购车车主的性别与购车种类(分为新能源汽车与传统燃油汽车)的情况,该企业心随机调查了该地区200位购车车主的购车情况作为样本其中男性车主中购置传统燃油汽车的有名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车.①若,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数(假设每位车主只购买一辆汽车,结果精确到千人);②设男性车主中购置新能源汽车的概率为,将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为,求当为何值时,最大.附:为回归方程,,.【答案】(1),2028年(2)①万人;②【分析】(1)根据所给数据,结合线性回归的公式求解方程,再令求解即可;(2)①计算该地区购置新能源汽车的车主中女性车主的频数与总人数求解即可;②根据二项分布的概率公式可得,再求导分析的最大值即可.【详解】(1)解:由题意得,,,.所以,.所以关于的线性回归方程为,令,得,所以最小的整数为12,,所以该地区新能源汽车的销量最早在2028年能突破50万辆.(2)解:①由题意知,该地区200名购车者中女性有名,故其中购置新能源汽车的女性车主的有名.所购置新能源汽车的车主中,女性车主所占的比例为.所以该地区购置新能源汽车的车主中女性车主的概率为.预测该地区2023年购置新能源汽车的销量为33万辆,因此预测该地区2020年购置新能源汽车的女性车主的人数为万人②由题意知,,则当时,知所以函数单调递增当时,知所以函数单调递减所以当取得最大值.此时,解得,所以当时取得最大值.16.(2022秋·江苏南通·高三校考期中)核酸检测也就是病毒DNA和RNA的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状乙肝、丙肝和艾滋病的病毒检测.通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n份分为一组,将样本分成若干组,从每一组的标本中各取部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.以此类推,直到确定所有样本的结果.若每次检测费用为a元,记检测的总费用为X元.(1)当n=3时,求X的分布列和数学期望.(2)比较n=3与n=4两种方案哪一个更好,说明理由.【答案】(1)分布列见解析,(2)效果好,理由见解析【分析】(1)2分阳性在一组,检测7次,各一组,检测10次,写出的所有可能值,求出对应的概率即可求解;(2)由(1)的思路求出检测总费用的数学期望并比较大小即可得解.【详解】(1)当时,共分4组,当2份阳性在一组,第一轮检测4次,第二轮检测3次,共检测7次,若2分阳性各在一组,第一轮检测4次,第二轮检测6次,共检测10次,所以检测的总费用的所有可能值为,任意检测有种等可能结果,2分阳性在一组有种等可能结果,,,所以检测的总费用的分布列为:的数学期望,(2)当时,共分3组,当2份阳性在一组,共检测7次,若2分阳性各在一组,共检测11次,检测的总费用的所有可能值为,任意检测有种等可能结果,2份阳性在一组有种等可能结果,所以,,所以检测的总费用的分布列为:的数学期望,所以时的方案更好一些.17.(2023·江苏扬州·扬州中学校考模拟预测)2022年卡塔尔世界杯决赛圈共有32队参加,其中欧洲球队有13支,分别是德国、丹麦、法国、西班牙、英格兰、克罗地亚、比利时、荷兰、塞尔维亚、瑞士、葡萄牙、波兰、威尔士.世界杯决赛圈赛程分为小组赛和淘汰赛,当进入淘汰赛阶段时,比赛必须要分出胜负.淘汰赛规则如下:在比赛常规时间90分钟内分出胜负,比赛结束,若比分相同,则进入30分钟的加时赛.在加时赛分出胜负,比赛结束,若加时赛比分依然相同,就要通过点球大战来分出最后的胜负.点球大战分为2个阶段.第一阶段:前5轮双方各派5名球员,依次踢点球,以5轮的总进球数作为标准(非必要无需踢满5轮),前5轮合计踢进点球数更多的球队获得比赛的胜利.第二阶段:如果前5轮还是平局,进入“突然死亡”阶段,双方依次轮流踢点球,如果在该阶段一轮里,双方都进球或者双方都不进球,则继续下一轮,直到某一轮里,一方罚进点球,另一方没罚进,比赛结束,罚进点球的一方获得最终的胜利.下表是2022年卡塔尔世界杯淘汰赛阶段的比赛结果:淘汰赛比赛结果淘汰赛比赛结果1/8决赛荷兰美国1/4决赛克罗地亚巴西阿根廷澳大利亚荷兰阿根廷法国波兰摩洛哥葡萄牙英格兰塞内加尔英格兰法国日本克罗地亚半决赛阿根廷克罗地亚巴西韩国法国摩洛哥摩洛哥西班牙季军赛克罗地亚摩洛哥葡萄牙瑞士决赛阿根廷法国注:“阿根廷法国”表示阿根廷与法国在常规比赛及加时赛的比分为,在点球大战中阿根廷战胜法国.(1)请根据上表估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率.(2)根据题意填写下面的列联表,并通过计算判断是否能在犯错的概率不超过0.01的前提下认为“32支决赛圈球队闯入8强”与是否为欧洲球队有关.欧洲球队其他球队合计闯入8强未闯入8强合计(3)若甲、乙两队在淘汰赛相遇,经过120分钟比赛未分出胜负,双方进入点球大战.已知甲队球员每轮踢进点球的概率为p,乙队球员每轮踢进点球的概率为,求在点球大战中,两队前2轮比分为的条件下,甲队在第一阶段获得比赛胜利的概率(用p表示).参考公式:0.10.050.010.0050.0012.7063.8416.6357.87910.828【答案】(1)(2)分布列见解析,不能(3)【分析】(1)根据古典概型概率公式求解;(2)由条件数据填写列联表,提出零假设,计算,比较其与临界值的大小,确定是否接受假设;(3)根据实际比赛进程,根据独立重复试验概率公式,独立事件概率公式和互斥事件概率公式求概率.【详解】(1)由题意知卡塔尔世界杯淘汰赛共有16场比赛,其中有5场比赛通过点球大战决出胜负,所以估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率;(2)下面为列联表:欧洲球队其他球队合计进入8强538未进入8强81624合计131932零假设支决赛圈球队闯入8强与是否为欧洲球队无关..根据小概率值的独立性检验,没有充分证据推断不成立,即不能在犯错的概率不超过0.01的前提下认为“决赛圈球队闯入8强”与是否为欧洲球队有关.(3)根据实际比赛进程,假定点球大战中由甲队先踢.两队前2轮比分为的条件下,甲在第一阶段获得比赛胜利,则后3轮有5种可能的比分,.当后3轮比分为时,甲乙两队均需踢满5轮,.当后3轮比分为时,有如下3种情况:345345345甲√√甲√×√甲×√√乙××乙××乙××则.当后3轮比分为时,有如下6种情况:345345345甲√√×甲√√×甲√×√乙√××乙×√×乙√××345345345甲√×√甲×√√甲×√√乙×√×乙√××乙×√×则.当后3轮比分为时,有如下2种情况:345345甲√√√甲√√√乙√×乙×√则当后3轮比分为时,有如下1种情况:345甲√√√乙√√×则.综上,在点球大战中两队前2轮比分为的条件下,甲在第一阶段获得比赛胜利的概率.【点睛】方法点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;(2)注意区分排列与组合,以及计数原理的正确使用.18.(2023春·江苏苏州·高三统考开学考试)设数轴上有一只兔子,从坐标开始,每秒以的概率向正方向跳一个单位,以的概率向反方向跳一个单位,记兔子第n秒时的位置为.(1)证明:;(2)记是表达式的最大值,证明:.【答案】(1)证明见解析(2)证明见解析【分析】(1)若n次跳动中一共向右跳了k次,则.得到,若n次跳动中一共向左跳了k次,则.得到,再利用,讨论或即可得证;(2)先计算,再利用,,进行放缩可以得证.【详解】(1)若n次跳动中一共向右跳了k次,则.因此,,1,2,…,n.若n次跳动中一共向左跳了k次,则.故,,1,2,…,n.于是,当时,;当时,.故,即.(2)因此.【点睛】关键点点睛:第一问中借助,从而讨论或即可得证;第二问中借助,,多次放缩才得证.19.(2023秋·江苏常州·高三江苏省前黄高级中学校考阶段练习)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值的随机变量,分别记作和.条件概率,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量的平均信息量定义为:.当时,信道疑义度定义为(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数的平均信息量;(2)设某信道的输入变量与输出变量均取值0,1.满足:.试回答以下问题:①求的值;②求该信道的信道疑义度的最大值.【答案】(1)2.40(2)①;②1【分析】(1)充分理解题意,利用随机变量的平均信息量定义解决本小题;(2)由全概率和条件概率公式解决本小题.【详解】(1)设表示扔一非均匀股子点数,则123456扔一次平均得到的信息量为.(2)①由全概率公式,得②由题意,.所以,;其中.令.时时,,.20.(2023秋·江苏·高三淮阴中学校联考开学考试)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(和都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使取得最大值的整数.【答案】(1)(2)【分析】(1)由于A和B是相互独立,,没有收到信息的概率正好是,所以最后的结果就能求出;(2)要从和两个角度考虑.【详解】(1)设事件A:“学生甲收到李老师所发信息”,事件B:“学生甲收到张老师所发信息”,由题意A和B是相互独立的事件,则与相互独立,而所以,因此,学生甲收到活动通知信息的概率为.(2)当时,只能取,有当,整数满足,其中是和中的较小者.“李老师和张老师各自独立、随机地发活动通知信息给位同学”所包含的基本事件总数为.当时,同时收到李老师和张老师转发信息的学生人数恰为,仅收到李老师或仅收到张老师转发信息的学生人数为,则由乘法计数原理知:事件所含基本事件数为此时当,化简解得假如成立,则当能被整除时,,故在和处达到最大值;则当不能被整除时,在处达最大值.(注:表示不超过的最大整数).下证:因为,所以,,故,显然.因此.【点睛】关键点睛:本题第二问的关键是用高斯取整函数证明.21.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数都在内,在以组距为5画分数的频率分布直方图(设“”)时,发现满足.(1)试确定的所有取值,并求;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在的参赛者评为一等奖;分数在的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生和均参加了本次比赛,且学生在第一阶段评为二等奖.()求学生最终获奖等级不低于学生的最终获奖等级的概率;()已知学生和都获奖,记两位同学最终获得一等奖的人数为,求的分布列和数学期望.【答案】(1);(2)();()分布列见解析,.【分析】(1)在内,按组距为5可分成6个小区间,分别是,,,,,.由,,能求出的所有取值和;(2)()由于参赛学生很多,可以把频率视为概率.学生的分数属于区间,,,,,的概率分别是,,,,,.用符号或()表示学生(或)在第一轮获奖等级为,通过附加赛最终获奖等级为,其中,记“学生最终获奖等级不低于学生的最终获奖等级”为事件,由此能求出学生最终获奖等级不低于学生的最终获奖等级的概率;()学生最终获得一等奖的概率是,学生最终获得一等奖的概率是,的可能取值为0,1,2,分别求出相应的概率,求出的分布列和.【详解】(1)根据题意,在内,按组距为5可分成6个小区间,分别是,,由,.每个小区间的频率值分别是.由,解得.的所有取值为,.(2)()由于参赛学生很多,可以把频率视为概率.由(1)知,学生的分数属于区间的概率分别是:,,,,,.我们用符号(或)表示学生(或)在第一轮获奖等级为,通过附加赛最终获奖等级为,其中.记“学生最终获奖等级不低于学生的最终获奖等级”为事件,则.()学生最终获得一等奖的概率是,学生最终获得一等奖的概率是,,,,的分布列为:.【点睛】本题考查频率分布直方图、条件概率、离散型随机变量的分布列、数学期望,考查学生的逻辑思维能力和运算能力,属于难题.22.(2023春·江苏南京·高三南京市第一中学校考开学考试)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:性别锻炼不经常经常女生4060男生2080(1)依据的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求第次传球后球在甲手中的概率.附:0.0100.0050.0016.6357.87910.828【答案】(1)可以认为性别因素与学生体育锻炼的经常性有关系,理由见解析(2)(3)【分析】(1)计算卡方,与6.635比较后得到结论;(2)利用事件,利用条件概率求出答案;(3)设n次传球后球在甲手中的概率为,,得到,利用构造法得到,即数列是以为首项,为公比的等比数列,从而求出通项公式,得到答案.【详解】(1),故依据的独立性检验,可以认为性别因素与学生体育锻炼的经常性有关系;(2)设从这200人中随机选择1人,设选到经常锻炼的学生为事件A,选到的学生为男生为事件B,则,则已知选到的学生经常参加体育锻炼,他是男生的概率;(3)设n次传球后球在甲手中的概率为,,则有,,设,则,所以,解得:,所以,其中,故数列是以为首项,为公比的等比数列,所以,故,故第次传球后球在甲手中的概率为.23.(2023秋·江苏·高三统考阶段练习)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论