版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宝鸡市高考模拟检测(一)数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷解答题又分必考题和选考题两部分,选考题为二选一.考生作答时,将所有答案写在答题卡上,在本试卷上答题无效.本试卷满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,书写要工整、笔迹清楚,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试卷上答题无效.第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,满分60分.1.若集合中只有一个元素,则实数()A.1 B.0 C.2 D.0或12.已知复数,为z的共轭复数,则在复平面表示的点在()A第一象限 B.第二象限 C.第三象限 D.第四象限3.展开式中的第四项为()A. B. C.240 D.4.函数的部分图像大致为()A. B.C. D.5.已知直线和圆交于A,B两点,O为坐标原点,则“”是“的面积为”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.在空间中,下列说法正确的是()A.若的两边分别与的两边平行,则B.若二面角的两个半平面,分别垂直于二面角的两个半平面,,则这两个二面角互补C.若直线平面,直线,则D.到四面体的四个顶点A,B,C,D距离均相等的平面有且仅有7个7.已知,则()A. B. C. D.8.三棱锥中,平面,为等边三角形,且,,则该三棱锥外接球的表面积为()A. B. C. D.9.千年宝地,一马当先.2023年10月15日7时30分,吉利银河.2023宝鸡马拉松赛在宝鸡市行政中心广场鸣枪开跑,比赛吸引了全国各地职业选手及路跑爱好者共2万人的热情参与.为确保活动顺利举行,组委会自起点开始大约每隔5公里设置一个饮水站(志愿者为选手递送饮料或饮用水,为选手提供能量补给),两个饮水站中间设置一个用水站(志愿者为选手递送湿毛巾等,协助医务工作者),共15个饮用水服务点,分别由含甲、乙在内的15支志愿者服务队负责,则甲队和乙队服务类型不同且服务点不相邻的概率为()A. B. C. D.10.过抛物线的焦点F作倾斜角为的直线交抛物线于A,B两点,点A在第一象限,则()A.2 B.3 C.4 D.11.已知函数满足:,且,则的值可能是()A.17 B.21 C.25 D.2912.设,是椭圆与双曲线(,)的公共焦点,P为它们的一个交点,,分别为,的离心率,若,则的取值范围为()A B. C. D.第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,满分20分.13.命题“任意,”为假命题,则实数a的取值范围是__________.14.设,满足约束条件,则的最小值为__________.15.在中,角A,B,C的对边分别为a,b,c,已知,,且,则__________.16.已知函数,若且,则的最大值为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.随着计算机时代的迅速发展,人工智能也渗透到生活的方方面面,如:线上缴费、指纹识别、动态导航等,给人们的生活带来极大的方便,提升了生活质量,为了了解市场需求,某品牌“扫地机器人”公司随机调查了1000人,记录其年龄与是否使用“扫地机器人”得到如下统计图表:(分区间,,……统计)(1)根据所给的数据,完成下面的列联表,并根据表中数据,判断是否有的把握认为使用“扫地机器人”与年龄有关?是否使用扫地机器人年龄是否
(2)若以图表一中的频率视为概率,现从年龄在的人中随机抽取3人做深度采访,求这3人中年龄在人数X的分布列与数学期望.附:.00500.0100.0013.8416.63510.82818.已知四棱锥中,,,,,M为的中点.(1)求证:平面;(2)若,,求二面角的余弦值.19已知数列,若,且.(1)求证:是等比数列,并求出数列的通项公式;(2)若,且数列的前n项和为,不等式对任意的正整数n恒成立,求实数a的取值范围.20.平面直角坐标系中,点A,B分别在x轴,y轴上运动,且,动点P满足.(1)求动点P的轨迹C的方程;(2)设点M,N在曲线C上,O为坐标原点,设直线,的斜率分别为,,且,试判断的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.21.已知函数(1)当时,求的单调区间;(2)已知,求证:当时,恒成立;(3)设,求证:当函数恰有一个零点时,该零点一定不是函数的极值点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请先涂题号.[选修4-4:坐标系与参数方程](本小题满分10分)22.在直角坐标系中,曲线C的参数方程为(为参数),直线l的参数方程为(其中t为参数,),且直线l和曲线C交于M,N两点.(1)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设工程合同范例 博客
- 房租拍卖合同范例
- 纹身学校培训学校合同范例
- 招聘业务合同范例
- 沧州劳务合同范例报价
- 陕西科技大学《高层建筑施工技术》2023-2024学年第一学期期末试卷
- 2024年演出票务预订合同3篇
- 交电设备运输合同范例
- 童装聘用合同范例
- 陕西机电职业技术学院《数学学科教学论》2023-2024学年第一学期期末试卷
- 工业园区物业管理方案
- 学前儿童家庭教育智慧树知到期末考试答案章节答案2024年厦门南洋职业学院
- 轻食行业宏观环境分析报告
- 中外钢琴名作赏析智慧树知到期末考试答案2024年
- 小学心理健康教育主题班会活动记录表
- 河北省沧州市2022-2023学年高一年级上册期末考试英语试题(解析版)
- 太常引建康中秋夜为吕叔潜赋课件
- 韩国豪华游轮7日游课件
- 高中数学成绩分析报告
- 自来水厂安全教育课件
- 关爱自己从心开始课件
评论
0/150
提交评论