《第十一章 三角形》单元测试卷及答案(共六套)_第1页
《第十一章 三角形》单元测试卷及答案(共六套)_第2页
《第十一章 三角形》单元测试卷及答案(共六套)_第3页
《第十一章 三角形》单元测试卷及答案(共六套)_第4页
《第十一章 三角形》单元测试卷及答案(共六套)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有()A.1个B.2个C.3个D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A.15B.16C.18D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°第3题图,第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于()A.80°B.120°C.100°D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40°B.60°C.80°D.90°6.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB.∠A=eq\f(1,2)∠B=eq\f(1,3)∠CC.∠A∶∠B∶∠C=1∶2∶3D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为()A.8B.9C.10D.128.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180°B.720°C.1080°D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=∠1+∠2D.3∠A=2(∠1+∠2)第9题图)第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为()A.110B.120C.160D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图),第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=eq\f(3,2)∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B2.D3.A4.C5.A6.D7.C8.B9.B10.B11.612.75;钝角13.85°14.3a-b-c15.360°16.25°17.七18.北偏西85°19.(1)24cm2(2)4.8cm(3)2cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为2221.∵∠A+∠ACB=90°,∴∠ACB=90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC=80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵2620÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=eq\f(1,2)∠OAB,∠EBA=eq\f(1,2)∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=eq\f(1,2)∠YBA-eq\f(1,2)∠OAB=eq\f(1,2)(∠YBA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=eq\f(1,2)×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D)A.3B.4C.5D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值(B)A.11B.5C.2D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是(B)A.30°B.40°C.50°D.60°4.若△ABC有一个外角是钝角,则△ABC一定是(D)A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为(B)A.5B.6C.7D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于(B)A.110°B.105°C.100°D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于(A)A.16B.14C.12D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是(C)A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为(C)A.115°B.105°C.95°D.85°第9题图,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是(D)A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图),第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__eq\f(α,22016)__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DAC=34°21.(9分)已知等腰三角形的周长为18cm,其中两边之差为3cm,求三角形的各边长.解:设腰长为xcm,底边长为ycm,则eq\b\lc\{(\a\vs4\al\co1(2x+y=18,,x-y=3,))或eq\b\lc\{(\a\vs4\al\co1(2x+y=18,,y-x=3,))解得eq\b\lc\{(\a\vs4\al\co1(x=7,,y=4,))或eq\b\lc\{(\a\vs4\al\co1(x=5,,y=8,))经检验均能构成三角形,即三角形的三边长是7cm,7cm,4cm或5cm,5cm,8cm22.(9分)如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120(m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24cm2(2)S△ABC=eq\f(1,2)×10×CD=24,∴CD=4.8cm(3)作图略,S△ABE=12cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.以下列各组线段为边,能组成三角形的是().A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.下列说法错误的是().A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是().A.四边形的边长 B.四边形的周长C.四边形的某些角的大小 D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个 B.2个C.3个 D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为().A.钝角三角形 B.锐角三角形C.直角三角形 D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是().A.相等 B.互补C.相等或互补 D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20cm,一边长为6cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B点拨:只有B中较短两边之和大于第三边,能组成三角形.2.C点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8cm或6cm点拨:当腰长是6cm时,根据周长20cm求得底边长是8cm,能组成三角形;当底边长是6cm时,求得腰长是7cm,也能组成三角形,两种情况都成立,所以底边长是8cm或6cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了12019.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)eq\f(1,2)πR2(2)πR2(3)eq\f(3,2)πR2(4)eq\f(n-2,2)πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.13.如图所示,已知点D是AB上的一点,点E是AC上的一点,BE,CD相交于点F,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)第15题第15题第16题A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高16.如图所示,x的值为()A.45°B.50°C.55°D.70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是()A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是()A.6 B.7 C.8三、解答题(共60分)19.(4分)△ABC中,∠A=2∠B=3∠C,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的关系,并说明理由.21.(4分)如图,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数.22.(6分)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.CBACBA23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4CBACBA24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?25.(6分)一个大型模板如图所示,设计要求BA与CD相交成30°角,DA与CB相交成20°,怎样通过测量∠A,∠B,∠C,∠D的度数,来检验模板是否合格?DDCBA26.(8分)如图所示,小明欲从A地去B地,有三条路可走:①A→B;②A→D→B;③A→C→B.(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC+BC>AD+DB,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=吗?如图2、图3,如果点B向右移到AC上,或AC的另一侧时,上述结论仍然成立吗?请分别说明理由.图图1 图2 图328.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案:(B卷)一、填空题1.22.稳定3.60°4.35°5.82.56.1207.答案不唯一8.540°9.∠A=2∠D10.130°11.或12. 13. 14.否二、选择题15.C 16.C 17.B 18.C三、解答题19.20. 21.22.三边长为16,16,22或20,20,1423.略24.六边形25.只要量得∠B+∠C=150°,∠C+∠D=160°,则模板即为合格26.(1)两点之间,线段最短;(2)略27.结论都成立,理由略28.(1)60°,90°,108°,120°,;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)2.下列说法错误的是()A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形的稳定性C.两点确定一条直线D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50°B.45°C.40°D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于()A.60°B.70°C.50°D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=eq\f(1,2)∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有()A.1个B.2个C.3个D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是()A.8B.12C.16D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A.3个B.4个C.5个D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是()A.1260°B.1080°C.900°D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是()A.5∶4∶3B.4∶3∶2C.3∶2∶1D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=()A.12°B.18°C.24°D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是()A.a+b+cB.-a+3b-cC.a+b-cD.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为.18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S阴影=.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=eq\f(1,3)∠AOC,∠PCE=eq\f(1,3)∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=eq\f(1,n)∠AOC,∠PCE=eq\f(1,n)∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A2.D3.C4.B5.A6.A7.B8.C9.C10.A11.C12.C13.C14.B15.A解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=eq\f(1,2)(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.766解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分)(2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=eq\f(1,2)AE·CD=eq\f(1,2)×3×2=3(cm2).(6分)∵S△AEC=eq\f(1,2)CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=xcm,BC=ycm,则AD=CD=eq\f(1,2)xcm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,eq\b\lc\{(\a\vs4\al\co1(x+\f(1,2)x=12,,y+\f(1,2)x=15,))解得eq\b\lc\{(\a\vs4\al\co1(x=8,,y=11.))即AB=AC=8cm,BC=11cm,符合三角形的三边关系.(5分)(2)当AB+AD=15cm,BC+CD=12cm时,eq\b\lc\{(\a\vs4\al\co1(x+\f(1,2)x=15,,y+\f(1,2)x=12,))解得eq\b\lc\{(\a\vs4\al\co1(x=10,,y=7.))即AB=AC=10cm,BC=7cm,符合三角形的三边关系.(9分)综上所述,AB=AC=8cm,BC=11cm或AB=AC=10cm,BC=7cm.(10分)25.解:(1)由题意可得∠BAC=180°-∠B-∠C=180°-40°-70°=70°,∠CAD=90°-∠C=90°-70°=20°,∴∠CAE=eq\f(1,2)∠BAC=35°,∴∠DAE=∠CAE-∠CAD=35°-20°=15°.(3分)(2)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°-∠B-∠C.∵AE平分∠BAC,∴∠CAE=eq\f(1,2)∠BAC=eq\f(1,2)(180°-∠B-∠C)=90°-eq\f(1,2)(∠B+∠C).∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C.(7分)∴∠DAE=∠CAE-∠CAD=90°-eq\f(1,2)(∠B+∠C)-(90°-∠C)=eq\f(1,2)(∠C-∠B)=eq\f(1,2)×30°=15°.(9分)(3)∵∠C-∠B=α,∴由(2)中可知∠DAE=eq\f(1,2)(∠C-∠B)=eq\f(1,2)α.(11分)26.(1)证明:∵A(0,1),B(4,1),∴AB∥CO,∴∠OAB=180°-∠AOC=90°.(1分)∵AC平分∠OAB,∴∠OAC=45°,∴∠OCA=90°-45°=45°,∴∠OAC=∠OCA.(3分)(2)解:∵∠POC=eq\f(1,3)∠AOC,∴∠POC=eq\f(1,3)×90°=30°.∵∠PCE=eq\f(1,3)∠ACE,∴∠PCE=eq\f(1,3)×(180°-45°)=45°.∴∠P=∠PCE-∠POC=15°.(7分)(3)解:∠P=eq\f(45°,n).(8分)证明如下:∵∠POC=eq\f(1,n)∠AOC,∴∠POC=eq\f(1,n)·90°=eq\f(90°,n).∵∠PCE=eq\f(1,n)∠ACE,∴∠PCE=eq\f(1,n)·(180°-45°)=eq\f(135°,n).(10分)∴∠P=∠PCE-∠POC=eq\f(45°,n).(12分)《第十一章三角形》单元测试卷(六)(满分:100分时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是()A.1,1,2B.3,7,11C下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线3、下列命题中,假命题是()A.如果|a|=a,则a≥0B.如果,那么a=b或a=-bC.如果ab>0,则a>0,b>0D.若,则a是一个负数4、若△ABC的三个内角满足关系式∠B+∠C=3∠A,则这个三角形()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是()A.三角形可分为斜三角形、直角三角形和锐角三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形外角一定是钝角D.△ABC中,如果∠A>∠B>∠C,那么∠A>60°,∠C<60°7、A.3:2:1B.5:4:3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论