数学人教A版必修3学案2-2-1用样本的频率分布估计总体分布_第1页
数学人教A版必修3学案2-2-1用样本的频率分布估计总体分布_第2页
数学人教A版必修3学案2-2-1用样本的频率分布估计总体分布_第3页
数学人教A版必修3学案2-2-1用样本的频率分布估计总体分布_第4页
数学人教A版必修3学案2-2-1用样本的频率分布估计总体分布_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2用样本估计总体2.2.1用样本的频率分布估计总体分布[目标]1.理解用样本的频率分布估计总体分布的方法;2.掌握列频率分布表、画频率分布直方图、频率分布折线图、茎叶图的方法;3.能够利用图形解决实际问题.[重点]频率分布直方图的画法及茎叶图的画法.[难点]应用频率分布直方图估计总体的分布.知识点一频率分布表和频率分布直方图[填一填]1.频率分布直方图的绘制(1)求极差,即一组数据中的最大值与最小值的差.(2)决定组距与组数,组距与组数的确定没有固定的标准,一般来说,数据分组的组数与样本容量有关,样本容量越大,所分组数越多,当样本容量不超过100时,按照数据的多少,常分为5~12组.(3)将数据分组.(4)列频率分布表,计算各小组的频率,作出频率分布表.(5)画频率分布直方图.其中横轴表示样本数据,纵轴表示频率与组距的比.2.频率分布直方图的意义频率分布直方图中,各小长方形的面积表示相应各组的频率,各小长方形的面积的总和等于1.[答一答]1.如何确定组距?提示:组距的选择应力求“取整”,如果极差不利于分组(如不能被组数整除),可适当增大极差,如在左、右两端各增加适当范围(尽量使两端增加的量相同).2.频率分布直方图中长方形的面积有什么含义?提示:在频率分布直方图中,由于长方形的面积S=组距×eq\f(频率,组距)=频率,所以各个小长方形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组上的频率的大小.知识点二频率分布折线图、总体密度曲线[填一填]1.频率分布折线图的定义连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义在样本频率分布直方图中,随着样本容量的增加,所分组数的增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线,它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.[答一答]3.频率分布折线图有什么优缺点?提示:频率分布折线图的优点是它可以表示数量的多少,直观地反映数量的增减情况,即变化趋势;缺点是它不适合总体分布较多的情况.知识点三茎叶图[填一填]1.茎叶图的适用范围在样本数据较少时,用茎叶图表示数据的效果较好.2.茎叶图的优点它不但可以保留所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便.3.茎叶图的缺点当样本数据较多时,枝叶就会很长,茎叶图就显得不太方便.[答一答]4.画茎叶图时,重复出现的数据只记录一次吗?提示:不是.绘制茎叶图时,重复出现的数据要重复记录,不能遗漏,特别是“叶”位置的数据.同一数据出现几次,就要在图中体现几次.类型三画样本的频率分布直方图[例1]下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高.(单位:cm)区间界限[122,126)[126,130)[130,134)人数5810区间界限[134,138)[138,142)[142,146)人数223320区间界限[146,150)[150,154)[154,158]人数1165(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.[解](1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158]50.04合计1201(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.在该问题中,分组区间已经给出,只需计算相应的频率即可列表.在画频率分布直方图时,小长方形的高是频率除以组距,需要预先进行计算.画频率分布直方图时,还需注意比例适当.从频率分布表或频率分布直方图,可以估计总体的分布情况.[变式训练1]为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组情况与频数如下:[10.75,10.85),3;[10.85,10.95),9;[10.95,11.05),13;[11.05,11.15),16;[11.15,11.25),26;[11.25,11.35),20;[11.35,11.45),7;[11.45,11.55),4;[11.55,11.65),2.(1)列出频率分布表;(2)画出频率分布直方图和频率分布折线图.解:(1)频率分布表如下:分组频数频率[10.75,10.85)30.03[10.85,10.95)90.09[10.95,11.05)130.13[11.05,11.15)160.16[11.15,11.25)260.26[11.25,11.35)200.20[11.35,11.45)70.07[11.45,11.55)40.04[11.55,11.65)20.02合计1001.00(2)频率分布直方图及频率分布折线图如图所示:类型二频率分布直方图的应用[例2]为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为24171593,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少?[解](1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的,因此第二小组的频率为eq\f(4,2+4+17+15+9+3)=0.08.因为第二小组的频率=eq\f(第二小组的频数,样本容量),所以样本容量=eq\f(第二小组的频数,第二小组的频率)=eq\f(12,0.08)=150.(2)由直方图可估计该校全体高一年级学生的达标率约为eq\f(17+15+9+3,2+4+17+15+9+3)×100%=88%.由频率分布直方图进行相关计算时,需掌握下列关系式:1eq\f(频率,组距)×组距=频率.2eq\f(频数,样本容量)=频率,此关系式的变形为eq\f(频数,频率)=样本容量,样本容量×频率=频数.[变式训练2]从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.030.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.解析:根据(0.035+a+0.020+0.010+0.005)×10=1,求得a=0.030.身高在[120,130)内学生有0.030×10×100=30人,在[130,140)内学生有0.020×10×100=20人,在[140,150]内学生有0.010×10×100=10人,则从身高在[140,150]内的学生中选取的人数为eq\f(18,30+20+10)×10=3(人).类型三茎叶图及应用[例3]某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产量数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430.(1)画出茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,得出统计结论.[分析]两组数据比较多,注意不要漏掉数据,根据茎叶图的特点(分布情况)写出统计结论.[解](1)茎叶图如图.(2)样本容量不大,画茎叶图很方便,此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息丢失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A亩产量的平均数比品种B亩产量的平均数大;②品种A的亩产量波动比品种B的亩产量波动大,故品种A的亩产量稳定性较差.1利用茎叶图进行数据分析时,通常从茎叶图中各个“叶”上的数字多少来分析该组数据的分布对称性、稳定性等.2如果茎叶图中的数据大致集中在某一行附近,那么说明这组数据比较稳定.,3茎叶图只适用于样本数据较少的情况.[变式训练3]为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得到如图所示的茎叶图,根据茎叶图解答下列问题:(1)求乙网站点击量的极差;(2)求甲网站点击量在[10,40]间的频数和频率;(3)请你估计甲、乙两网站哪个更受欢迎?并说理由.解:(1)根据茎叶图,得乙网站的点击量的最大值是71,最小值是5,则乙网站的极差为71-5=66.(2)观察茎叶图,得甲网站点击量在[10,40]间的点击量有20,24,25,38共4个,所以甲网站点击量在[10,40]间的频数为4,频率为eq\f(4,14)=eq\f(2,7).(3)观察茎叶图,得甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲的平均数大于乙的平均数,所以甲网站更受欢迎.1.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4.则样本在[25,25.9)上的频率为(C)A.eq\f(3,20)B.eq\f(1,10)C.eq\f(1,2)D.eq\f(1,4)解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10,频数之和为20,频率为eq\f(20,40)=eq\f(1,2),故选C.2.在用样本频率分布估计总体分布的过程中,下列说法正确的是(C)A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确3.从甲、乙两种玉米苗中各抽6株,分别测得它们的株高如图所示(单位:cm),根据数据估计(D)A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐解析:甲种玉米株高集中在21cm~37cm,极差为37-16=21cm,乙种玉米株高集中在27~45且极差为45-14=31cm,因此可以判断乙种玉米比甲种玉米长得高但长势没有甲整齐.故选D.4.为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(C)A.6B.8C.12D.18解析:由题图可知,第一组与第二组的频率之和为(0.24+0.16)×1=0.4.因为第一组与第二组共有20人,所以该试验共选取志愿者eq\f(20,0.4)=50(人),故第三组共有50×0.36=18(人),没有疗效的有6人,故有疗效的有18-6=12(人).5.甲、乙两名篮球运动员在某几场比赛得分情况为甲:12,15,25,24,39,36,31,37,49,44,50;乙:16,13,14,26,23,28,39,33,38,51.(1)画出甲、乙两名篮球运动员在某几场比赛得分的茎叶图;(2)甲、乙两人这几场比赛得分的中位数之和是多少.解:(1)以得分的十位数为“茎”,个位数为“叶”在同一图中画出即可.茎叶图如图所示.(2)甲得分的中位数为第六个数36,乙得分的中位数为第五个和第六个数的平均数,即eq\f(26+28,2)=27,所以甲、乙得分的中位数之和为63.——本课须掌握的两大问题1.理解频率分布直方图注意以下几点:(1)在频率分布直方图中,各小长方形的面积的总和等于1,利用这一点可以检验所画的直方图是否正确.(2)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的直方图的形状也不相同.不同的形状给人以不同的印象,这种印象很多时候会影响我们对总体的判断.(3)同一个总体,由于抽样的随机性,如果随机地抽取另外一个样本,所形成的样本频率分布一般会与前一个样本的频率分布有所不同,但是它们都可以近似地看作总体的分布.2.对茎叶图的认识:(1)茎叶图在样本数据较少、较为集中且位数不多时比较适用.由于它较好地保留了原始数据且能够展示数据的分布情况,所以可以帮助我们分析样本数据的大致频率分布,还可以用来分析样本的一些数字特征.(2)用茎叶图表示数据有两个突出的优点:其一,图上没有原始数据的损失,所有信息都可从这个茎叶图中得到;其二,茎叶图可以随时记录,方便记录与表示.eq\o(\s\up7(),\s\do5(学科素养培优精品微课堂))不能正确理解频率分布直方图开讲啦在频率分布直方图中,每个小长方形的面积表示相应各组的频率,所有小长方形的面积之和为1.在解题时,常因把小长方形的高误认为是频率而导致错误.[典例]为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄在17.5~18岁之间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论