




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省丹东市第九中学2023-2024学年数学九上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列图形中为中心对称图形的是()A.等边三角形 B.平行四边形 C.抛物线 D.五角星2.如图是二次函数的部分图象,则的解的情况为()A.有唯一解 B.有两个解 C.无解 D.无法确定3.如图,直角△ABC中,,,,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是()A. B.C. D.4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,15.如图是二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正确的有()A.1个 B.2个 C.3个 D.46.二次函数图像的顶点坐标为()A.(0,-2) B.(-2,0) C.(0,2) D.(2,0)7.已知分式的值为0,则的值是().A. B. C. D.8.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×29.如图,点A、B、C是⊙O上的三点,∠BAC=40°,则∠OBC的度数是()A.80° B.40° C.50° D.20°10.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为()A.2 B.3 C.4 D.611.已知是一元二次方程的解,则的值为()A.-5 B.5 C.4 D.-412.下列约分正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F.将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.14.如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.15.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.16.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.17.如图,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的长为_____.18.如图,半径为,正方形内接于,点在上运动,连接,作,垂足为,连接.则长的最小值为________.三、解答题(共78分)19.(8分)如图,O是所在圆的圆心,C是上一动点,连接OC交弦AB于点D.已知AB=9.35cm,设A,D两点间的距离为cm,O,D两点间的距离为cm,C,D两点间的距离为cm.小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值:/cm0.001.002.003.004.005.006.007.108.009.35/cm4.933.992.281.701.592.042.883.674.93/cm0.000.941.832.653.233.342.892.051.260.00(2)①在同一平面直角坐标系中,描出表中各组数值所对应的点(,),(,),并画出(1)中所确定的函数,的图象;②观察函数的图象,可得cm(结果保留一位小数);(3)结合函数图象,解决问题:当OD=CD时,AD的长度约为cm(结果保留一位小数).20.(8分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)21.(8分)如图,在△ABC中,AB=AC,M为BC的中点,MH⊥AC,垂足为H.(1)求证:;(2)若AB=AC=10,BC=1.求CH的长.22.(10分)抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).23.(10分)(1)解方程组:(2)计算24.(10分)如图,,平分,且交于点,平分,且交于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.25.(12分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.(1)用含的代数式表示线段的长.(2)当点与点重合时,求的值.(3)设与重叠部分图形的面积为,求与之间的函数关系式.26.一位同学想利用树影测量树高,他在某一时间测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不完全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,测算一下这棵树的高时多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】根据中心对称图形的概念求解.【详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】根据图象可知抛物线顶点的纵坐标为-3,把方程转化为,利用数形结合求解即可.【详解】根据图象可知抛物线顶点的纵坐标为-3,把转化为抛物线开口向下有最小值为-3∴(-3)>(-4)即方程与抛物线没有交点.即方程无解.故选C.【点睛】本题考查了数形结合的思想,由题意知道抛物线的最小值为-3是解题的关键.3、A【分析】连结AD.根据图中阴影部分的面积=三角形ABC的面积-三角形ACD的面积-扇形ADE的面积,列出算式即可求解.【详解】解:连结AD.
∵直角△ABC中,∠A=90°,∠B=30°,AC=4,
∴∠C=60°,AB=4,
∵AD=AC,
∴三角形ACD是等边三角形,
∴∠CAD=60°,
∴∠DAE=30°,
∴图中阴影部分的面积=4×4÷2-4×2÷2-=4-π.
故选A.【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算.4、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.5、B【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y轴交于负半轴,则c<1,故①正确;②对称轴x1,则2a+b=1.故②正确;③由图可知:当x=1时,y=a+b+c<1.故③错误;④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.综上所述:正确的结论有2个.故选B.【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6、A【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【详解】解:抛物线y=x2-2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,-2),故选A.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为,对称轴为x=h.7、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.8、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.9、C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.10、D【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.【详解】因为,BD=3,S△BCD==3,所以,,解得,CD=2,因为,C(2,0)所以,OD=4,所以,B(4,3)把B(4,3)代入y=,得k=12,所以,y=所以,S△AOC=故选D【点睛】本题考核知识点:反比例函数.解题关键点:熟记反比例函数性质.11、B【解析】根据方程的解的定义,把代入原方程即可.【详解】把代入得:4-2b+6=0b=5故选:B【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.12、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.二、填空题(每题4分,共24分)13、(8075,1)【分析】旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3,根据已知A(0,3),B(4,0),可求得AB长度和三角形内切圆的半径,依次求出OE1,OE2,OE3,OE4,OE5,OE6的长,找到规律,求得OE2018的长,即可求得直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标.【详解】如图所示,旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3设三角形内切圆的半径为r∵△AOB是直角三角形,A(0,3),B(4,0)∴∵⊙P是△AOB的内切圆∴即∴r=1∴BE=BF=OB-OE=4-1=3∵△BO1A1是△AOB绕其B点按顺时针方向旋转得到∴BE1=BF=3∴OE1=4+3∵A1E2=3-1=2∴OE2=4+5+2∴OE3=4+5+3+1同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+12018÷3=6722OE2018=672×(4+5+3)+(4+5+2)=8075三角形在翻折后内切圆的纵坐标不变∴P2018(8075,1)故答案为:(8075,1)【点睛】本题是坐标的规律题,考查了图形翻折的性质,翻转后图形对应的边和角不变,本题应用了三角形内切圆的性质,及三角形内切圆半径的求法,用勾股定理解直角三角形等知识.14、【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH=OA=×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=故答案是:.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.15、4【分析】根据线段是线段和的比例中项,得出,将a,b的值代入即可求解.【详解】解:∵线段是线段和的比例中项,∴即又∵、的长度分别为2和8,∴∴c=4或c=-4(舍去)故答案为:4【点睛】本题考查了比例中项的概念,掌握基本概念,列出等量关系即可解答.16、①②④【解析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.【详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正确,故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.17、9【解析】∵AD∥EF∥BC,,∴DF=6,∴FC=3,DC=DF+FC=9,故答案为9.18、【分析】先求得正方形的边长,取AB的中点G,连接GF,CG,当点C、F、G在同一直线上时,根据两点之间线段最短,则CF有最小值,此时即可求得这个值.【详解】如图,连接OA、OD,取AB的中点G,连接GF,CG,∵ABCD是圆内接正方形,,∴,∴,∵AF⊥BE,∴,∴,,当点C、F、G在同一直线上时,CF有最小值,如下图:最小值是:,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF的最小值是解决本题的关键.三、解答题(共78分)19、(2)①见解析;②3.1(3)6.6cm或2.8cm【分析】(2)①根据画函数图象的步骤:描点、连线即可画出函数图象;②根据题意,利用图象法解答即可;(3)根据题意:就是求当时对应的x的值,可利用函数图象,观察两个函数的交点对应的x的值即可.【详解】解:(2)①如图所示:②观察图象可得:当x=2时,y1=3.1,∴m=3.1;故答案为:3.1;(3)当OD=CD时,即y1=y2时,如图,x约为6.6或2.8,即AD的长度约为6.6cm或2.8cm.故答案为:6.6cm或2.8cm.【点睛】本题是圆与函数的综合题,主要考查了圆的有关知识和动点问题的函数图象,熟练运用图象法、灵活应用数形结合的思想是解题的关键.20、见解析【解析】分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解:.21、(1)详见解析;(2)3.2【分析】(1)证明,利用线段比例关系可得;(2)利用等腰三角形三线合一和勾股定理求出AM的长,再由(1)中关系式可得AH长度,可得CH的长.【详解】解:(1)证明:∵,为的中点,∴∴∵∴∴∴∴∴(2)解:∵,,M为的中点,∴,在中,,由(1)得∴.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形三线合一的性质,解题的关键是利用相似三角形得到线段比例关系.22、(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.23、(1);(2)【分析】(1)利用加减消元法进行求解即可;(2)根据分式混合运算的法则及运算顺序进行计算即可.【详解】解:(1),①×2得:③,②-③得:,解得:,将代入①得:,原方程组的解为;(2)原式.【点睛】本题考查了二元一次方程组的求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚餐活动策划方案2025年企业团建聚餐方案
- 新手入门指南
- 2025年安全月活动主题方案
- 酒店保安知识培训课件
- 同项类课程讲解大纲
- 海尔空调XXXX年产品培训十个必讲点
- 古代科学概述
- 贵州省铜仁地区名校2025届初三年级第五次月考物理试题含解析
- 昭通市重点中学2025届高三下学期期末测试卷数学试题(一诊康德卷)含解析
- 泰州学院《现代汉语II》2023-2024学年第一学期期末试卷
- 热风炉耐材砌筑施工方案
- (完整版)高中状语从句练习题带答案
- 人教版六年级道德与法治下册课件 第二单元 爱护地球 共同责任 4 地球——我们的家园
- GIS导论笔记整理
- (完整word版)宿舍建筑平面图
- 《理工英语1》课程导学PPT课件
- 电梯台账表格(精编版)
- 关于“最美乡村教师”和“优秀乡村教师”结果的通报
- 禁止吸烟管理制度
- 鼻胆管护理 (2)ppt课件
- 田字格硬笔书法练字专用A4打印版红蓝两色
评论
0/150
提交评论