下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
谈谈排列组合中的分组问题的教学分组问题是排列组合教学中的一个重点和难点。某些排列组合问题看似非分组问题,实际上可运用分组问题的方法来解决。下面就排列组合中的分组问题,谈谈自己在教学中的体会和做法。一、根本的分组问题例1六本不同的书,分为三组,每组两本,有多少种分法?分析:分组与顺序无关,是组合问题。分组数是=90(种),这90种分组实际上重复了6次。我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上参加了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数,所以分法是=15(种)。例2六本不同的书,分为三组,一组一本,一组二本,一组三本,有多少种分法?分析:先分组,方法是,那么还要不要除以?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有=60(种)分法。例3六本不同的书,分为三组,一组四本,另外两组各一本,有多少种分法?分析:先分组,方法是=30(种),那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,不可能重复。所以实际分法是=15(种)。通过以上三个例题的分析,我们可以得出分组问题的一般方法。原理一一般地,n个不同的元素分成p组,各组内元素数目分别为m,m,…,m,其中k组内元素数目相等,那么分组方案是。二、分组后分配的问题例4将上面三个例题中的“分为三组”改为“分给甲、乙、丙三人”,那么各有多少种分法?分析:由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。实际上可看作“分为三组,再将这三组分给甲、乙、丙三人”,因此只要将分组方法数再乘以,即例1是=90(种),例2是=360(种),例3是=90(种)。原理二一般地,如果每个“不同的元素”和每个“接受单位”都有“归宿”,并且每个“接受单位”可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以“接受单位”数的全排列数。例5六本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种分法?分析:六本书和甲、乙、丙三人都有“归宿”,即书要分完,人不能空手。因此,考虑先分组,后排列。先分组,六本书怎么分为三组呢?有三类分法(1)每组两本(2)分别为一本、二本、三本(3)两组各一本,另一组四本。所以根据加法原理,分组法是++=90(种)。再考虑排列,即再乘以。所以一共有540种不同的分法。三、分组问题的变形问题例6四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?分析:恰有一个空盒,那么另外三个盒子中小球数分别为1,1,2。实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有(种),然后将这三组再加上一个空盒进行全排列,即共有=144(种)。例7有甲、乙、丙三项任务,甲需2人承当,乙、丙各需1人承当,从10人中选派4人承当这三项任务,不同的选法有多少种?分析:先考虑分组,即10人中选4人分为三组,其中两组各一人,另一组二人,共有(种)分法。再考虑排列,甲任务需2人承当,因此2人的那个组只能承当甲任务,而一个人的两组既可承当乙任务又可承当丙任务,所以共有=2520(种)不同的选法。例8设集合A={1,2,3,4},B={6,7,8},A为定义域,B为值域,那么从集合A到集合B的不同的函数有多少个?分析:由于集合A为定义域,B为值域,即集合A、B中的每个元素都有“归宿”,而集合B的每个元素接受集合A中对应的元素的数目不限,所以此问题实际上还是分组后分配的问题。先考虑分组,集合A中4个元素分为三组,各组的元素数目分别为1、1、2,那么共有(种)分组方法。再考虑分配,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国新型烟草行业开拓第二增长曲线战略制定与实施研究报告
- 2025-2030年中国卫星遥感行业全国市场开拓战略制定与实施研究报告
- 2025-2030年中国空调维修与售后行业并购重组扩张战略制定与实施研究报告
- 新形势下电子散热材料及器件行业高速增长战略制定与实施研究报告
- 中国移动互联网APP行业发展趋势预测及投资战略研究报告
- 二年级数学(上)计算题专项练习汇编
- 春分文化与新媒介
- 管理层晋升述职报告
- 易制爆危险化学品购销交易流程
- 二零二五年度大型货车司机劳动合同范本与注意事项2篇
- 阅读理解(专项训练)-2024-2025学年湘少版英语六年级上册
- 民用无人驾驶航空器产品标识要求
- 2024年医院产科工作计划例文(4篇)
- 2024-2025学年九年级英语上学期期末真题复习 专题09 单词拼写(安徽专用)
- 无创通气基本模式
- 江西省赣州市寻乌县2023-2024学年八年级上学期期末检测数学试卷(含解析)
- 《临床放射生物学》课件
- 肠造口还纳术手术配合
- 2024年中考语文试题分类汇编:诗词鉴赏(学生版)
- 中国音乐史与名作赏析智慧树知到期末考试答案章节答案2024年山东师范大学
- 管廊维护与运营绩效考核评分表
评论
0/150
提交评论