2022年山东省泰安市现代中学高二数学理月考试题含解析_第1页
2022年山东省泰安市现代中学高二数学理月考试题含解析_第2页
2022年山东省泰安市现代中学高二数学理月考试题含解析_第3页
2022年山东省泰安市现代中学高二数学理月考试题含解析_第4页
2022年山东省泰安市现代中学高二数学理月考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省泰安市现代中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0参考答案:A【考点】双曲线的简单性质.【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.2.将长为1的小棒随机拆成3小段,则这3小段能构成三角形的概率为()参考答案:C3.在等差数列{an}中,若a2+2a6+a10=120,则a3+a9等于

A.30

B.40

C.60

D.80参考答案:C4.已知命题:双曲线的渐近线方程为;命题:函数在原点处的切线方程为.则下列命题是真命题的是(A)

(B)

(C)

(D)参考答案:D略5.已知点到直线的距离相等,则实数等于(

)A. B. C.1 D.或参考答案:D6.下列说法错误的是(

A、用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台.B、有两个面平行,其余各个面都是梯形的几何体一定都是棱台.

C、圆锥的轴截面是等腰三角形.

D、用一个平面去截球,截面是圆.参考答案:B7.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.a,a+b,a-b

B.b,a+b,a-bC.c,a+b,a-b

D.a+b,a-b,a+2b参考答案:C略8.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于(

)A.

B.

C.

D.参考答案:C

解析:Δ是等腰直角三角形,9.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有()A.252种 B.112种 C.70种 D.56种参考答案:B【考点】D8:排列、组合的实际应用.【分析】由题意知将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生两种情况一是包括甲、乙每屋住4人、3人,二是甲和乙两个屋子住5人、2人,列出两种情况的结果,根据分类计数原理得到结果.【解答】解:由题意知将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生包括甲、乙每屋住4人、3人或5人、2人,∵当甲和乙两个屋子住4人、3人,共有C73A22当甲和乙两个屋子住5人、2人,共有C72A22∴根据分类计数原理得到共有C73A22+C72A22=35×2+21×2=112(种).故选B.【点评】本题考查分类计数问题,是一个基础题,解题时主要依据是要看清楚每个宿舍至少安排2名学生两种情况,注意做到不重不漏.10.已知复数z满足(1+2i)z=4+3i,则z=()A.2+i B.2﹣i C.1+2i D.1﹣2i参考答案:B【考点】复数代数形式的乘除运算.【分析】复数方程两边同乗1﹣2i,化简即可.【解答】解:∵(1+2i)z=4+3i,∴(1﹣2i)(1+2i)z=(4+3i)(1﹣2i)5z=10﹣5i,z=2﹣i,故选B.二、填空题:本大题共7小题,每小题4分,共28分11.已知,若,则实数k的值为

.参考答案:1【考点】数量积判断两个平面向量的垂直关系.【分析】根据,?=0,利用坐标运算,求出k的值.【解答】解:∵,且,∴?=0,即1×(﹣2)+2k=0;解得k=1.故答案为:1.12.α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:①m^n

②α^β③m^β④n^α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:若

则_____。(填序号)参考答案:②③④13.已知点P为双曲线﹣=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为,若M为△PF1F2的内心,且S=S+λS,则λ的值为.参考答案:【考点】双曲线的简单性质.【分析】根据三角形的面积公式以及三角形的面积公式,建立方程关系,结合双曲线的渐近线斜率以及a,b,c的关系进行求解即可.【解答】解:设内切圆的半径为R,∵S=S+λS成立,∴S﹣S=λS,即|PF1|?R﹣|PF2|?R=?λ|P1P2|?R,即×2a?R=?λ?2c?R,∴a=λc,∵双曲线的一条渐近线的斜率为,∴=即b=a=λc,∵a2+b2=c2,∴λ2c2+3λ2c2=c2,即4λ2=1,即λ2=,得λ=,故答案为:.14.已知命题p:“函数在R上有零点”,命题q:函数f(x)=在区间(1,+∞)内是减函数,若p∧q为真命题,则实数m的取值范围为.参考答案:[,1]【考点】复合命题的真假.【分析】分别求出p,q为真时的m的范围,根据若p∧q为真命题,取交集即可.【解答】解:函数在R上有零点,即﹣=m2﹣+有解,令g(x)=﹣≤﹣,故m2﹣+≤﹣,解得:≤m≤2;故p为真时:m∈[,2];函数f(x)=在区间(1,+∞)内是减函数,则m≤1,若p∧q为真命题,则p真q真,故,故答案为:[,1].15.已知.若,且,则____,集合____.

参考答案:,16.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ≤0)=.参考答案:0.16【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布N(2,σ2),看出这组数据对应的正态曲线的对称轴μ=2,根据正态曲线的特点,即可得到结果.【解答】解:∵随机变量X服从正态分布N(2,σ2),∴μ=2,∵P(ξ≤4)=0.84,∴P(ξ≥4)=1﹣0.84=0.16,∴P(ξ≤0)=P(ξ≥4)=1﹣P(ξ≤4)=0.16,故答案为:0.16.【点评】本题考查正态分布,正态曲线的特点,若一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布.17.如右图,圆锥中,、为底面圆的两条直径,,且,,为的中点.异面直线与所成角的正切值为

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(1)判断函数的奇偶性;(2)试用函数单调性定义说明函数在区间和上的增减性;(3)若满足:,试证明:.参考答案:解:(1)∵当时,,∴∴

2分∵当时,,∴∴

4分∴对都有,故为偶函数

5分(2)当时,设且,则

7分∴当时,即

当时,即

9分∴函数在区间上是减函数,在区间上是增函数

11分(3)由(2)可知,当时:若,则即若,则即∴当时,有

12分又由(1)可知为偶函数,∴当时,有

13分∴若,时,则,

14分∴,即

15分

略19.已知数列{an}的前n项和,令bn=log9an+1.(1)求数列{bn}的通项公式;(2)若数列{bn}的前n项和为Tn,数列的前n项和为Hn,求H2017.参考答案:【考点】数列的求和;数列递推式.【分析】(1)由数列的前n项和求出数列通项公式,代入bn=log9an+1,利用对数的运算性质求得数列{bn}的通项公式;(2)求出数列{bn}的前n项和为Tn,利用裂项相消法求得数列的前n项和为Hn,则H2017可求.【解答】解:(1)当n=1时,;当n≥2时,.a1=1适合上式,∴.则bn=log9an+1=,即数列{bn}的通项公式;(2)由,得.则.于是=,则.20.已知关于x的不等式(x﹣a)(x﹣a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.参考答案:【考点】一元二次不等式的解法.【分析】(1)a=2时解对应的一元二次不等式即可;(2)a∈R且a≠0且a≠1时,讨论a2与a的大小,解不等式(x﹣a)(x﹣a2)<0即可.【解答】解:(1)当a=2时,不等式化为(x﹣2)(x﹣4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4};(2)当a∈R,a≠0且a≠1时,当0<a<1时,a2<a,解不等式(x﹣a)(x﹣a2)<0,得:a2<x<a;当a<0或a>1时,a<a2,解不等式(x﹣a)(x﹣a2)<0,得:a<x<a2;综上,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.21.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?甲6080709070乙8060708075参考答案:【考点】极差、方差与标准差.【分析】先求出甲和乙的平均数,再求出甲和乙的方差,结果甲的平均数大于乙的平均数,甲的方差大于乙的方差,得到结论.【解答】解:,,∵∴甲的平均成绩较好,乙的各门功课发展较平衡.22.如图,在正方体ABCD﹣A1B1C1D1中.求证:(1)A1C⊥BD;(2)平面AB1D1∥平面BC1D.参考答案:【考点】平面与平面平行的判定;直线与平面垂直的性质.【分析】(1)要证A1C⊥BD,只需证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论