辽宁省营口中学2024届高一数学第一学期期末考试试题含解析_第1页
辽宁省营口中学2024届高一数学第一学期期末考试试题含解析_第2页
辽宁省营口中学2024届高一数学第一学期期末考试试题含解析_第3页
辽宁省营口中学2024届高一数学第一学期期末考试试题含解析_第4页
辽宁省营口中学2024届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省营口中学2024届高一数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数,则A. B.-1C.-5 D.2.若都是锐角,且,,则的值是A. B.C. D.3.已知幂函数f(x)=xa的图象经过点P(-2,4),则下列不等关系正确的是()A. B.C. D.4.已知函数的图像如图所示,则A. B.C. D.5.已知函数若则的值为().A. B.或4C. D.或46.设P是△ABC所在平面内的一点,,则A. B.C. D.7.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.8.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.9.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.2310.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称11.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.所在平面 B.

所在平面C.所在平面 D.所在平面12.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=二、填空题(本大题共4小题,共20分)13.已知角的终边过点,则___________.14.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)15.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______16.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________三、解答题(本大题共6小题,共70分)17.已知直线经过直线与直线的交点,且与直线垂直.(1)求直线的方程;(2)若直线与圆相交于两点,且,求的值.18.已知幂函数的图象过点.(1)求出函数的解析式,判断并证明在上的单调性;(2)函数是上的偶函数,当时,,求满足时实数的取值范围.19.设全集,集合,(1)当时,求;(2)若,求实数的取值范围20.已知,且函数.(1)判断的奇偶性,并证明你的结论;(2)设,对任意,总存在,使得g(x1)=h(x2)成立,求实数c的取值范围.在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出a,b的值,并解答本题.①函数在定义域上为偶函数;②函数在上的值域为;21.已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值22.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】f(x)=∴f()=,f[f()]=f()=.故答案为A点睛:由分段函数得f()=,由此能求出f[f()]的值2、A【解析】由已知得,,故选A.考点:两角和的正弦公式3、A【解析】根据幂函数的图像经过点,可得函数解析式,然后利用函数单调性即可比较得出大小关系【详解】因为幂函数的图像经过点,所以,解得,所以函数解析式为:,易得为偶函数且在单调递减,在单调递增A:,正确;B:,错误;C:,错误;D:,错误故选A【点睛】本题考查利用待定系数法求解函数解析式,函数奇偶性和单调性的关系:奇函数在对应区间的函数单调性相同;偶函数在对应区间的函数单调性相反4、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题5、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.6、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.7、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化8、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C9、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.10、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.11、B【解析】本题为折叠问题,分析折叠前与折叠后位置关系、几何量的变与不变,可得HA、HE、HF三者相互垂直,根据线面垂直的判定定理,可判断AH与平面HEF的垂直【详解】根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,D不正确故选B【点睛】本题考查直线与平面垂直的判定,一般利用线线⇔线面⇔面面,垂直关系的相互转化判断12、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.14、③【解析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【点睛】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、15、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④16、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为三、解答题(本大题共6小题,共70分)17、(1);(2)或.【解析】(1)由解得P的坐标,再求出直线斜率,即可求直线的方程;(2)若直线与圆:相交由垂径定理列方程求解即可.【详解】(1)由得所以.因为,所以,所以直线的方程为,即.(2)由已知可得:圆心到直线的距离为,因为,所以,所以,所以或.【点睛】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小18、(1),在上是增函数;证明见解析(2)【解析】(1)幂函数的解析式为,将点代入即可求出解析式,再利用函数的单调性定义证明单调性即可.(2)由(1)可得当时,在上是增函数,利用函数为偶函数可得在上是减函数,由,,从而可得,解不等式即可.【详解】(1)设幂函数的解析式为,将点代入解析式中得,解得,所以,所求幂函数的解析式为.幂函数在上是增函数.证明:任取,且,则,因为,,所以,即幂函数在上是增函数(2)当时,,而幂函数在上是增函数,所以当时,在上是增函数.又因为函数是上的偶函数,所以在上是减函数.由,可得:,即,所以满足时实数的取值范围为.【点睛】本题考查了幂函数、函数单调性的定义,利用函数的奇偶性、单调性解不等式,属于基础题.19、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【详解】(1)当时,或,或.(2),若,则当时,,不成立,解得,的取值范围是.20、(1)奇函数,证明见解析;(2).【解析】若选择①利用偶函数的性质求,若选择条件②,利用函数的单调性,求函数的值域,比较后得到值;(1)由①或②得,利用奇偶函数的定义判断;(2)根据条件转化为的值域是的值域的子集,求实数的取值范围.【详解】若选择①由,在上是偶函数,则,且,所以a=2,b=0;②当a>1时,在上单调递增,则有,解得a=2,b=0;由①或②得,(1)为奇函数证明:的定义域为R.因为,则为奇函数(2)当x>0时,,因为,当且仅当即x=1时等号成立,所以;当x<0时,因为为奇函数,所以;当x=0时,;所以的值域为[,],,,函数是单调递减函数,所以函数的值域是对任意的,总存在,使得g(x1)=h(x2)成立,,,得.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集21、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z(2)f(x)的最大值为2,最小值为–1【解析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z由,求得,k∈Z故f(x)的对称轴方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论