内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题含解析_第1页
内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题含解析_第2页
内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题含解析_第3页
内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题含解析_第4页
内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼伦贝尔市2024届高一数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若-<α<0,则点P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.设,且,则()A. B.C. D.3.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=114.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在5.已知函数(,,)的图象如图所示,则()A.B.对于任意,,且,都有C.,都有D.,使得6.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.7.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点8.两圆和的位置关系是A.内切 B.外离C.外切 D.相交9.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.10.已知集合0,,1,,则A. B.1,C.0,1, D.11.已知全集,则()A. B.C. D.12.已知幂函数是偶函数,则函数恒过定点A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.16.三条直线两两相交,它们可以确定的平面有______个.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.直线与直线平行,且与坐标轴构成的三角形面积是24,求直线的方程.18.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.19.在正方体中挖去一个圆锥,得到一个几何体,已知圆锥顶点为正方形的中心,底面圆是正方形的内切圆,若正方体的棱长为.(1)求挖去的圆锥的侧面积;(2)求几何体的体积.20.已知有半径为1,圆心角为a(其中a为给定的锐角)的扇形铁皮OMN,现利用这块铁皮并根据下列方案之一,裁剪出一个矩形.方案1:如图1,裁剪出的矩形ABCD的顶点A,B在线段ON上,点C在弧MN上,点D在线段OM上;方案2:如图2,裁剪出的矩形PQRS的顶点P,S分别在线段OM,ON上,顶点Q,R在弧MN上,并且满足PQ∥RS∥OE,其中点E为弧MN的中点.(1)按照方案1裁剪,设∠NOC=,用表示矩形ABCD的面积S1,并证明S1的最大值为;(2)按照方案2裁剪,求矩形PQRS的面积S2的最大值,并与(1)中的结果比较后指出按哪种方案可以裁剪出面积最大的矩形.21.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值22.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】∵-<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选B考点:本题考查了三角函数值的符号点评:熟练掌握三角函数的定义及三角函数的值的求法是解决此类问题的关键,属基础题2、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D3、C【解析】因为,所以,则,故选C4、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.5、C【解析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C6、B【解析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D8、D【解析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【点睛】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.9、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题10、A【解析】直接利用交集的运算法则化简求解即可【详解】集合,,则,故选A【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.11、C【解析】根据补集的定义计算可得;【详解】解:因为,所以;故选:C12、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.16、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、【解析】设直线,则将直线与两坐标轴的交点坐标,代入三角形的面积公式进行运算,求出参数,即可得到答案.【详解】设直线,分别与轴、轴交于两点,则,,那么.所以直线的方程是【点睛】本题考查用待定系数法求直线的方程,两直线平行的性质,以及利用直线的截距求三角形的面积.18、(1)(2)【解析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化简可得:,解得:,所以,所以,当且仅当即,的最小值为.【小问2详解】不等式,可化为,因为,所以,所以该不等式的解集为.19、(1).(2).【解析】(1)求出圆锥的底面半径和母线,利用公式侧面积为即可;(2)正方体体积减去圆锥的体积即可.试题解析:(1)圆锥的底面半径,高为,母线,∴挖去的圆锥的侧面积为.(2)∵的体积为正方体体积减去圆锥的体积,∴的体积为.20、(1),证明见解析;(2),方案1可以裁剪出面积最大的矩形.【解析】(1)分别用含有的三角函数表示,写出矩形的面积,利用三角函数求最值;(2)利用(1)的结论,根据对称性知,矩形的最大面积为,然后利用作差法比较大小即可【小问1详解】在图1中,,,,,,,当时,矩形最大面积为,得证.【小问2详解】在图(2)中,设与边,分别交于点,,由(1)的结论,可得矩形的最大面积为,根据对称性知,矩形的最大面积为.因为为锐角,所以,于是.因此,.故按照方案1可以裁剪出面积最大的矩形,其最大面积为.21、(1)(2)【解析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论