内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题含解析_第1页
内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题含解析_第2页
内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题含解析_第3页
内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题含解析_第4页
内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古乌拉特前旗三校2023年数学九年级第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某专卖店专营某品牌女鞋,店主对上一周中不同尺码的鞋子销售情况统计如表:尺码3536373839平均每天销售数量(双)281062该店主决定本周进货时,增加一些37码的女鞋,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数2.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2 B.4 C.6 D.83.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.4.一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为()A. B. C. D.5.如图,点,分别在反比例函数,的图象上.若,,则的值为()A. B. C. D.6.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.nmile B.60nmile C.120nmile D.nmile8.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)9.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.10.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.11.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°12.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米二、填空题(每题4分,共24分)13.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.14.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.15.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为__________.16.关于的方程的一个根是,则它的另一个根是__________.17.写出一个你认为的必然事件_________.18.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.三、解答题(共78分)19.(8分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.20.(8分)某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?21.(8分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.22.(10分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.23.(10分)如图,在中,,为上一点,,.(1)求的长;(2)求的值.24.(10分)如图,点是的内心,的延长线交于点,交的外接圆于点,连接,过点作直线,使;(1)求证:直线是的切线;(2)若,,求.25.(12分)如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)26.某商场经营一种新上市的文具,进价为元/件,试营销阶段发现:当销售单价为元/件时,每天的销售量是件;销售单价每上涨一元,每天的销售量就减少件,(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?

参考答案一、选择题(每题4分,共48分)1、C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2、D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.3、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.4、B【分析】用黄球的个数除以球的总个数即为所求的概率.【详解】因为一共有10个球,其中黄球有4个,

所以从布袋里任意摸出1个球,摸到白球的概率为.故选:B.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.5、A【分析】分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,根据点A所在的图象可设点A的坐标为(),根据相似三角形的判定证出△BDO∽△OCA,列出比例式即可求出点B的坐标,然后代入中即可求出的值.【详解】解:分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∵点在反比例函数,设点A的坐标为(),则OC=x,AC=,∴∠BDO=∠OCA=90°∵∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°∴∠BOD=∠OAC∴△BDO∽△OCA∴解得:OD=2AC=,BD=2OC=2x,∵点B在第二象限∴点B的坐标为()将点B坐标代入中,解得故选A.【点睛】此题考查的是求反比例函数解析式相似三角形的判定及性质,掌握用待定系数法求反比例函数的解析式和构造相似三角形的方法是解决此题的关键.6、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.7、D【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.【详解】过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=1.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=1×.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选D.【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.8、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.9、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.10、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.11、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.12、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【点睛】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.二、填空题(每题4分,共24分)13、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.14、【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等边三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案为:.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.15、【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△ABP为等边三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC为直角三角形,∴,∴BC=AB×=,故答案为:.【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键.16、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.17、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.18、【解析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.三、解答题(共78分)19、(1)见解析;(2)4.5;(3)27【分析】(1)根据等腰三角形的性质可得,结合切线的判定方法可得结论;(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;(3)根据两组对应角分别相等的两个三角形相似可得,利用相似三角形对应线段成比例可求得EO长,由三角形面积公式求解即可.【详解】(1)证明:∵,,∴,,∵,∴,∴,∴∵是圆的半径,∴是的切线;(2)如图,过点作于点,连接,∵点是的中点,,∴,,又∵,,,,∴,∴,(3)∵,∴,∵,,∴,∴,∴,由(2)得即,得,∴的面积是:.【点睛】本题是圆与三角形的综合题,涉及的知识点主要有切线的判定与性质、垂径定理、勾股定理、相似三角形的判定和性质,明确题意,确定所求问题的条件是解题的关键.20、(1)10%;(2)当定价为90元时,w最大为4500元.【分析】(1)设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解;(2)销售定价为每件m元,每月利润为y元,列出二者之间的函数关系式利用配方法求最值即可.【详解】解:(1)根据题意得:100(1﹣x)2=81,解得:x1=0.1,x2=1.9,经检验x2=1.9不符合题意,∴x=0.1=10%,答:每次降价百分率为10%;(2)设销售定价为每件m元,每月利润为y元,则y=(m﹣60)[100+5×(100﹣m)]=﹣5(m﹣90)2+4500,∵a=﹣5<0,∴当m=90元时,w最大为4500元.答:(1)下降率为10%;(2)当定价为90元时,w最大为4500元.【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程.21、(1)补图见解析;(2)90,直径所对的圆周角是直角.【分析】(1)根据要求作出图形即可.

(2)根据线段的垂直平分线的性质以及圆周角定理证明即可.【详解】解:(1)如图线段CM即为所求.

证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC==90°(直径所对的圆周角是直角

),∴CM⊥AB.即CM就是AB边上的高线.故答案为:90°,直径所对的圆周角是直角.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、.【分析】试题分析:先在Rt△ACD中,由正切函数的定义得tanA=,求出AD=4,则BD=AB﹣AD=1,再解Rt△BCD,由勾股定理得BC==10,sinB=,cosB=,由此求出sinB+cosB=.【详解】解:在Rt△ACD中,∵∠ADC=90°,∴tanA=,∴AD=4,∴BD=AB﹣AD=12﹣4=1.在Rt△BCD中,∵∠BDC=90°,BD=1,CD=6,∴BC==10,∴sinB=,cosB=,∴sinB+cosB==.故答案为考点:解直角三角形;勾股定理.23、(1);(2).【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论