版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《10.3.2随机模拟》教学设计【教材分析】用频率估计概率,需要做大量的重复实验,而本节课内容为了更好地保证试验地准确性,借助计算器或计算机软件可以产生随机数.也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,从而达到利用随机模拟试验求概率的目的.【教学目标与核心素养】课程目标1.理解随机模拟试验出现地意义.2.利用随机模拟试验求概率.数学学科素养1.数学抽象:随机模拟试验的理解.2.数学运算:利用随机模拟试验求概率.【教学重点】:利用随机模拟试验求概率.【教学难点】:利用随机模拟试验求概率.【教学过程】一、情景导入用频率估计概率,需要做大量的重复实验,有没有其他方法可以替代实验呢?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本255-257页,思考并完成以下问题1、什么是随机模拟?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1.随机模拟我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,这么随机模拟方式叫做随机模拟.我们称利用随机模拟解决问题地方法为蒙特卡洛(MonteCarlo)方法.四、典例分析、举一反三题型一利用随机模拟实验求概率例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.【答案】见解析【解析】根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件发生了.重复以上模拟试验20次,就可以统计出事件发生的频率.例2在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.【答案】【解析】设事件“甲获得冠军”,事件“单局比赛甲胜”,则.用计算器或计算机产生1~5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛3局,所以每3个随机数为一组.例如,产生20组随机数:423123423344114453525332152342534443512541125432334151314354相当于做了20次重复试验.其中事件发生了13次,对应的数组分别是423,123,423,114,332,152,342,512,125,432,334,151,314,用频率估计事件的概率的近似似值为.解题技巧(利用随机模拟实验求概率)用随机模拟来估计概率,一般有如下特点的事件可以用这种方法来估计:(1)对于满足“有限性”但不满足“等可能性”的概率问题,我们可采取随机模拟方法来估计概率.(2)对于一些基本事件的总数比较大而导致很难把它列举得不重复、不遗漏的概率问题或对于基本事件的等可能性难于验证的概率问题,可用随机模拟方法来估计概率.跟踪训练一1.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为()A. B. C. D.【答案】C【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,恰好抽取三次就停止的概率约为,故选C.2.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.【答案】0.1【解析】用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.666743671464571561156567732375716116614445117573552274114622就相当于做了20次试验,在这组数中,前两个数字不是7,第三个数字恰好是7,就表示第一次、第二次摸的是白球,第三次恰好是红球,它们分别是567和117共两组,因此恰好第三次摸到红球的概率约为=0.1.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计10.3.210.3.2随机模拟1.随机模拟例1例2七、作业课本257页练习,257页习题10.3的剩余题.【教学反思】应用所学知识解决典型概率问题,解决与生活实际联系紧密的问题.课堂可通过分组竞赛的方式培养学生学习数学的积极性.《10.3.2随机模拟》导学案【学习目标】1.理解随机模拟试验出现地意义.2.利用随机模拟试验求概率.【教学重点】:利用随机模拟试验求概率.【教学难点】:利用随机模拟试验求概率.【学习过程】一、预习导入阅读课本255-257页,填写。1.随机模拟我们知道,利用________或________________可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,这么随机模拟方式叫做随机模拟.我们称利用随机模拟解决问题地方法为蒙特卡洛(MonteCarlo)方法.【牛刀小试】1.下列不能产生随机数的是()A.抛掷骰子试验B.抛硬币C.计算器 D.正方体的六个面上分别写有2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B.0.25C.0.20D.0.153.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:57270293714098570347437386369647141746980371623326168045601136619597742467104281据此估计,该射击运动员射击4次至多击中1次的概率为()A.0.95 B.0.1C.0.15 D.0.054.一个袋中有8个大小、形状相同的小球,6个白球2个红球.现任取1个,则恰好第三次摸到红球的概率___________.【自主探究】题型一利用随机模拟实验求概率例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.例2在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.跟踪训练一1.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为()A. B. C. D.2.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.【达标检测】1.关于随机数的说法正确的是()A.随机数就是随便取的一些数字B.随机数是用计算机或计算器随便按键产生的数C.用计算器或计算机产生的随机数为伪随机数D.不能用伪随机数估计概率2.袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“春、夏、秋、冬”四个字,每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:1324123243142432312123133221244213322134据此估计,直到第二次就停止的概率为()A. B. C. D.3.已知某射击运动员,每次击中目标的概率都是.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727
0293
7140
9857
0347
4373
8636
96471417
46980371
6233
2616
8045
6011
3661
9597
7424
6710
4281据此估计,该射击运动员射击4次至少击中3次的概率为_____________.A.0.85 B.0.8192 C.0.8 D.0.754.一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率为_____________.5.盒子中仅有4个白球和5个黑球,从中任意取出一个球.(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?(4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计“取出的球是白球”的概率.答案小试牛刀1.D2.B.3.D.4.0.25.自主探究例1【答案】见解析【解析】根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件发生了.重复以上模拟试验20次,就可以统计出事件发生的频率.例2【答案】【解析】设事件“甲获得冠军”,事件“单局比赛甲胜”,则.用计算器或计算机产生1~5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛3局,所以每3个随机数为一组.例如,产生20组随机数:423123423344114453525332152342534443512541125432334151314354相当于做了20次重复试验.其中事件发生了13次,对应的数组分别是423,123,423,114,332,152,342,512,125,432,334,151,314,用频率估计事件的概率的近似似值为.跟踪训练一1.【答案】C【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,恰好抽取三次就停止的概率约为,故选C.2.【答案】0.1【解析】用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.666743671464571561156567732375716116614445117573552274114622就相当于做了20次试验,在这组数中,前两个数字不是7,第三个数字恰好是7,就表示第一次、第二次摸的是白球,第三次恰好是红球,它们分别是567和117共两组,因此恰好第三次摸到红球的概率约为=0.1.当堂检测 1-2.CB3.0.754.0.165.【答案】(1)答案见解析.(2)答案见解析.(3)答案见解析.(4)答案见解析.【解析】(1)从中任意取出一个球,“取出的球是黄球”是不可能事件,它的概率为.(2)“取出的球是白球”是随机事件事件,它的概率是.(3)“取出的球是白球或是黑球”是必然事件,它的概率是(4)用计算机产生1-9的随机数,规定1-4代表白球,5-9代表黑球.7684138164868488462151552283659435797953344344849249211645527843496984675899486873713832664317722495从表中可以查1-4数据有46个,5-9数据有54个.“取出的球是白球”的概率为:.《10.3.2随机模拟》同步练习基础练习1.用随机模拟方法得到的频率()A.大于概率 B.小于概率 C.等于概率 D.是概率的近似值2.抛掷一枚硬币次,若正面向上用随机数表示,反面向上用随机数表示,下面表示次抛掷恰有次正面向上的是()A. B.C. D.3.袋中有2个黑球,3个白球,除颜色外完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球,4,5,6,7,8,9代表白球,在下列随机数中表示结果为二白一黑的组数为()160288905467589239079146351A.3 B.4 C.5 D.64.抛掷两枚质地均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每组中数字的个数为()A.1 B.2 C.10 D.125.在用随机(整数)模拟求“有个男生和个女生,从中取个,求选出个男生个女生”的概率时,可让计算机产生的随机整数,并用代表男生,用代表女生.因为是选出个,所以每个随机数作为一组.若得到的一组随机数为“”,则它代表的含义是___.6.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为____________.7.某种树苗的成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.问题(1)用随机模拟方法估计概率时,如何用随机数体现树苗的成活率为0.9?(2)用随机模拟方法估计概率时,如何用随机数体现种植这种树苗5棵?8.盒中有大小、形状相同的5只白球和2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.提优练习9.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.10.(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是()A.抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B.同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D.张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜11.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.034743738636964736614698637162332616804560111410959774246762428114572042533237322707360751据此估计乙获胜的概率为________.12.(1)掷两枚质地均匀的骰子,计算点数和为7的概率;(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;(3)所得频率与概率相差大吗?为什么会有这种差异?《10.3.2随机模拟》同步练习答案解析基础练习1.用随机模拟方法得到的频率()A.大于概率 B.小于概率 C.等于概率 D.是概率的近似值【答案】D【解析】当实验数据越多频率就越接近概率用随机模拟方法得到的频率,数据是有限的,是接近概率.故选:D.2.抛掷一枚硬币次,若正面向上用随机数表示,反面向上用随机数表示,下面表示次抛掷恰有次正面向上的是()A. B.C. D.【答案】C【解析】代表正面向上,恰有次正面向上,应是由个,个组成的结果,故选C.3.袋中有2个黑球,3个白球,除颜色外完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球,4,5,6,7,8,9代表白球,在下列随机数中表示结果为二白一黑的组数为()160288905467589239079146351A.3 B.4 C.5 D.6【答案】B【解析】由题意可知,288,905,079,146表示二白一黑,所以有4组.故选:B.4.抛掷两枚质地均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每组中数字的个数为()A.1 B.2 C.10 D.12【答案】B【解析】抛掷两枚质地均匀的正方体骰子,它们的点数分别为,,则.产生的整数随机数中,每组中数字的个数为2,满足题意的数组为,,.故选:B.5.在用随机(整数)模拟求“有个男生和个女生,从中取个,求选出个男生个女生”的概率时,可让计算机产生的随机整数,并用代表男生,用代表女生.因为是选出个,所以每个随机数作为一组.若得到的一组随机数为“”,则它代表的含义是___.【答案】选出的4个人中,只有1个男生【解析】代表男生,用代表女生,表示一男三女,即“”代表的含义是选出的个人中,只有个男生.6.袋子中有四个小球,分别写有“中、华、民、族”四个字,有放回地从中任取一个小球,直到“中”“华”两个字都取到才停止.用随机模拟的方法估计恰好抽取三次停止的概率,利用电脑随机产生0到3之间取整数值的随机数,分别用代表“中、华、民、族”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好抽取三次就停止的概率为____________.【答案】【解析】由随机产生的随机数可知恰好抽取三次就停止的有,共4组随机数,恰好抽取三次就停止的概率约为,故选C.7.某种树苗的成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.问题(1)用随机模拟方法估计概率时,如何用随机数体现树苗的成活率为0.9?(2)用随机模拟方法估计概率时,如何用随机数体现种植这种树苗5棵?【答案】(1)见解析;(2)见解析.【解析】(1)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9代表成活,这样可以体现成活率是0.9.(2)因为是种植树苗5棵,所以每5个随机数作为一组.8.盒中有大小、形状相同的5只白球和2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.【答案】(1)答案见解析(2)答案见解析【解析】(1)用表示白球,表示黑球.步骤:①利用计算器或计算机产生到的整数值随机数,每一个数为一组,统计组数;②统计这组数中小于的组数;③任取一球,得到白球的概率估计值是.(2)用表示白球,表示黑球.步骤:①利用计算器或计算机产生到的整数值随机数,每三个数为一组,统计组数;②统计这组数中,每个数字均小于的组数;③任取三球,都是白球的概率估计值是.提优练习9.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.【答案】A【解析】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.10.(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是()A.抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B.同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D.张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜【答案】ACD【解析】选项A中,向上的点数为奇数与向上的点数为偶数的概率相等,A符合题意;选项B中,张明获胜的概率是,而李华获胜的概率是,故游戏规则不公平,B不符合题意;选项C中,扑克牌是红色与扑克牌是黑色的概率相等,C符合题意;选项D中,两人写的数字相同与两人写的数字不同的概率相等,D符合题意.故选:ACD11.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业电脑交易协议格式(2024年)版A版
- 2025年度跨境电商平台产品区域代理合同协议书4篇
- 科技前沿:资金驱动创新
- 2025年度仓储物流场地租赁保证金三方服务协议4篇
- 2025年度柴油运输合同书(智能化物流服务)4篇
- 2025年度绿色环保型铲车租赁合作协议4篇
- 2025年智能餐饮连锁店合作协议范本3篇
- 2025年度特色面馆连锁品牌加盟管理规范合同范本3篇
- 2025年度商业地产项目场地合作运营协议4篇
- 专业电线电缆供应协议模板2024版
- 【公开课】同一直线上二力的合成+课件+2024-2025学年+人教版(2024)初中物理八年级下册+
- 高职组全国职业院校技能大赛(婴幼儿照护赛项)备赛试题库(含答案)
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- 装饰工程施工技术ppt课件(完整版)
- SJG 05-2020 基坑支护技术标准-高清现行
- 汽车维修价格表
- 司炉岗位应急处置卡(燃气)参考
- 10KV供配电工程施工组织设计
- 终端拦截攻略
- 药物外渗处理及预防【病房护士安全警示教育培训课件】--ppt课件
评论
0/150
提交评论