版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏银川市银川一中2023-2024学年高一上数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.2.设函数,若,则A. B.C. D.3.圆的半径和圆心坐标分别为A. B.C. D.4.有一组实验数据如下表所示:x2.0134.015.16.12y38.011523.836.04则最能体现这组数据关系的函数模型是()A. B.C. D.5.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.6.甲:“x是第一象限的角”,乙:“是增函数”,则甲是乙的()A充分但不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.138.若函数在闭区间上有最大值5,最小值1,则的取值范围是()A. B.C. D.9.已知圆心在轴上的圆与直线切于点.若直线与圆相切,则的值为()A.9 B.7C.-21或9 D.-23或710.已知集合,,若,则的子集个数为A.14 B.15C.16 D.3211.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.12.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数在一个周期内图象如图所示,此函数的解析式为___________.14.函数的定义域为_____________________15.已知函数,则的值为_________.16._____________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.(1)已知,求的值;(2)已知,,求的值.18.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a19.如图,边长为的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.(1)求四棱锥的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.20.(1)计算:(2)已知,求的值21.已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.22.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案2、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质3、D【解析】半径和圆心坐标分别为,选D4、D【解析】将各点分别代入各函数,即可求出【详解】将各点分别代入各函数可知,最能体现这组数据关系的函数模型是故选:D5、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6、D【解析】由正弦函数的单调性结合充分必要条件的定义判定得解【详解】由x是第一象限的角,不能得到是增函数;反之,由是增函数,x也不一定是第一象限角故甲是乙的既不充分又不必要条件故选D【点睛】本题考查充分必要条件的判定,考查正弦函数的单调性,是基础题7、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.8、D【解析】数形结合:根据所给函数作出其草图,借助图象即可求得答案【详解】,令,即,解得或,,作出函数图象如下图所示:因为函数在闭区间上有最大值5,最小值1,所以由图象可知,故选:D【点睛】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的关键9、D【解析】先求得圆的圆心和半径,根据直线若直线与圆相切,圆心到直线的距离等于半径列方程,解方程求得的值.【详解】圆心在轴上圆与直线切于点.可得圆的半径为3,圆心为.因为直线与圆相切,所以由切线性质及点到直线距离公式可得,解得或7.故选:D【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.10、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C11、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.12、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.14、【解析】,区间为.考点:函数的定义域15、【解析】,填.16、【解析】利用指数与对数的运算性质,进行计算即可【详解】.【点睛】本题考查了指数与对数的运算性质,需要注意,属于基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)根据题意,构造齐次式求解即可;(2)根据,并结合求解即可.【详解】解:(1)因为所以,(2)因为,所以,因为,所以,所以所以所以18、(1)对称轴为,单调减区间(2)【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】19、(1);(2)证明见解析;(3)存在,为中点,证明见解析.【解析】(1)由等腰三角形三线合一性质和面面垂直性质定理可证得平面,由棱锥体积公式可求得结果;(2)连结交于点,由三角形中位线性质可证得,由线面平行判定定理可得到结论;(3)当为中点时,由正方形的性质、线面垂直的性质,结合线面垂直的判定可证得平面,由面面垂直的判定定理可证得结论.【详解】(1)为中点,为正三角形,.平面平面,平面平面,平面,平面.,,.(2)证明:连结交于点,连结.由四边形为正方形知点为的中点,又为的中点,,平面,平面,平面.(3)存在点,当为中点时,平面平面.证明如下:因为四边形是正方形,为的中点,,由(1)知:平面,平面,,又,平面.平面,平面平面.【点睛】关键点点睛:本题第三问考查了与面面垂直有关的存在性问题的处理,解题关键是能够根据平面确定只要在上,必有,由此只需找到与面中的另一条与相交的直线垂直即可,进而锁定的位置.20、(1);(2)【解析】(1)根据指数的运算性质及对数的运算性质计算即可得解;(2)利用诱导公式化简,再化弦为切即可得解.【详解】解:(1)原式;(2)原式.21、(1)A={0,1,2,3,4,5,6,7};(2)见解析.【解析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,xi∈M,i=1,2,3}.即可得到集合A;(Ⅱ)由于ai,bi∈M,i=1,2,…,n.an<bn,可得an-bn≤-1.由题意可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤-[1+q+…+qn-2+qn-1],再利用等比数列的前n项和公式即可得出试题解析:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnq
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45026-2024侧扫声呐海洋调查规范
- 2024版消防工程协议外施工补充协议书版B版
- 2025年度企业HSE内部审计与改进合同3篇
- 2024版短期架桥机租赁协议
- 二零二五年度高端品牌服装企业集中采购合作协议3篇
- 二零二五年度高科技园区土地承包经营合同2篇
- 2024年矿山岩石开采作业与施工责任协议版B版
- 二零二五版婚姻财产协议书明确夫妻财产分配细则3篇
- 二零二五年度智慧农业项目设备采购与农技支持合同3篇
- 632项目2024年度技术服务协议版B版
- JJF 2122-2024 机动车测速仪现场测速标准装置校准规范
- 充电桩四方协议书范本
- 2024年南京铁道职业技术学院单招职业技能测试题库及答案解析
- 2023年信息处理技术员教程
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
评论
0/150
提交评论