




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
曲靖第一中学2023年高一上数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=52.()A. B.C. D.3.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.4.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定5.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.6.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.7.已知向量,,则在方向上的投影为A. B.8C. D.8.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.9.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.10.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________12.已知函数在区间是单调递增函数,则实数的取值范围是______13.若向量与共线且方向相同,则___________14.已知幂函数在上为减函数,则实数_______15.若函数在上存在零点,则实数的取值范围是________16.若命题“是假命题”,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数的图象经过,且不等式对一切实数都成立(1)求函数的解析式;(2)若对任意,不等式恒成立,求实数的取值范围18.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.19.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值20.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程21.已知函数,且最小正周期为.(1)求的单调增区间;(2)若关于的方程在上有且只有一个解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A2、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.3、C【解析】根据余弦二倍角公式即可计算求值.【详解】∵=,∴,∴.故选:C.4、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A5、C【解析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.6、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.7、D【解析】依题意有投影为.8、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题9、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B10、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次12、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:13、2【解析】向量共线可得坐标分量之间的关系式,从而求得n.【详解】因为向量与共线,所以;由两者方向相同可得.【点睛】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.14、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关15、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:16、####【解析】等价于,解即得解.【详解】解:因为命题“是假命题”,所以,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)观察不等式,令,得到成立,即,以及,再根据不等式对一切实数都成立,列式求函数的解析式;(2)法一,不等式转化为对恒成立,利用函数与不等式的关系,得到的取值范围,法二,代入后利用平方关系得到,恒成立,再根据参变分离,转化为最值问题求参数的取值范围.【详解】(1)由题意得:①,因为不等式对一切实数都成立,令,得:,所以,即②由①②解得:,且,所以,由题意得:且对恒成立,即对恒成立,对③而言,由且,得到,所以,经检验满足,故函数的解析式为(Ⅱ)法一:二次函数法,由题意,对恒成立,可转化为,对恒成立,整理为对恒成立,令,则有,即,解得,所以的取值范围为法二,利用乘积的符号法则和恒成立命题求解,由①得到,,对恒成立,可转化为对恒成立,得到对恒成立,平方差公式展开整理,即即或对恒成立,即或即,或,即或,所以的取值范围为【点睛】本题考查求二次函数的解析式,不等式恒成立求参数的取值范围,重点考查函数,不等式与方程的关系,转化与变形,计算能力,属于中档题型.18、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.19、(1)(2)见解析【解析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【点睛】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,即开口方向和对称轴都知道,而题目给定定义域是含有参数的动区间,故需要对区间和对称轴对比进行分类讨论函数的最值.20、(1)x+2y-4=0(2)2x-y+6=0【解析】(1)直接根据两点式公式写出直线方程即可;(2)先根据直线的垂直关系求出高线的斜率,代入点斜式方程即可【详解】(1)BC边所在直线的方程为:=,即x+2y-4=0;(2)∵BC的斜率K1=-,∴BC边上的高AD的斜率K=2,∴BC边上的高线AD所在直线的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童文学考试题及答案
- 网络安全防护设备选型试题及答案
- 未来民主西方政治制度的蜕变试题及答案
- 创新网络解决方案的探索与试题及答案
- 未来西方政治制度与气候变化应对措施试题及答案
- 如何理解公民身份与社会责任试题及答案
- 西方社会运动与政治改革的试题及答案
- 深入探讨西方国家政治中的性别问题试题及答案
- 软件设计师职业发展趋势试题及答案
- 生态建设与公共政策的关系研究试题及答案
- 2025年基金与投资管理考试试卷及答案
- 书画培训合作合同范本
- 2025年河北省中考乾坤押题卷物理试卷B及答案
- 马帮运输安全协议书
- 2025年安全生产考试题库(矿业行业安全规范)试卷
- 中职数学拓展模块课件-正弦型函数的图像和性质
- 国家宪法知识竞赛题库题库加答案下载
- 六年级学生心理疏导教育
- 电网工程设备材料信息参考价2025年第一季度
- 成都设计咨询集团有限公司2025年社会公开招聘(19人)笔试参考题库附带答案详解
- 炎德·英才大联考雅礼中学 2025 届模拟试卷(一)物理试题及答案
评论
0/150
提交评论