平面向量知识点总结及训练题_第1页
平面向量知识点总结及训练题_第2页
平面向量知识点总结及训练题_第3页
平面向量知识点总结及训练题_第4页
平面向量知识点总结及训练题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE6PAGE1第五章平面向量一、向量的相关概念:1.向量的概念:我们把既有大小又有方向的量叫向量注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小2、向量的表示方法:几何表示法:①用有向线段表示;②用字母、等表示;③用有向线段的起点与终点字母:;坐标表示法:3、向量的模:向量的大小――长度称为向量的模,记作||.4、特殊的向量:①长度为0的向量叫零向量,记作的方向是任意的②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.5、相反向量:与长度相同、方向相反的向量记作6、相等的向量:长度相等且方向相同的向量叫相等向量.向量与相等,记作;7、平行向量(共线向量):方向相同或相反的向量,称为平行向量记作平行向量也称为共线向量规定零向量与任意向量平行。8、两个非零向量夹角的概念:已知非零向量与,作=,=,则叫与的夹角说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记⊥;规定零向量和任意向量都垂直。(4)注意在两向量的夹角定义,两向量必须是同起点的范围0≤≤1809、实数与向量的积:实数λ与向量的积是一个向量,记作,它的长度与方向规定如下:(Ⅰ);(Ⅱ)当时,的方向与的方向相同;当时,的方向与的方向相反;当时,,方向是任意的10、两个向量的数量积:已知两个非零向量与,它们的夹角为,则叫做与的数量积(或内积)规定11、向量的投影:定义:||cos叫做向量在方向上的投影,投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为||;当=180时投影为||,称为向量在方向上的投影投影的绝对值称为射影二、重要定理、公式:1、平面向量基本定理:,是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数,使(1).平面向量的坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………eq\o\ac(○,1)我们把叫做向量的(直角)坐标,记作…………eq\o\ac(○,2)其中叫做在轴上的坐标,叫做在轴上的坐标,eq\o\ac(○,2)式叫做向量的坐标表示向量的减法三角形法则(首首相接,尾尾相连,指向被减)向量的乘法实数λ与向量的积是一个向量,记作:(1)(2)时,与同向;当时,与异向;当时,。任意方向向量的数量积,1或时,2且时,向量的数量积的几何意义:数量积等于的长度与在方向上投影的乘积或特别注意:(1)结合律不成立:;(2)消去律不成立不能得到(3)不能得到=或=乘法公式成立:线段的定比分点公式:设点P分有向线段所成的比为λ,即=λ,则(线段定比分点的坐标公式)当λ=1时,得中点公式:=(+)或平移公式:设点P(x,y)按向量=(h,k)平移后得到点P′(x′,y′),则=+a或曲线y=f(x)按向量=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h)正弦定理其中R表示三角形的外接圆半径):(1)(2)a=2RsinA,b=2RsinB,c=2RsinC(3)余弦定理(1)=(2)(3);=2\*GB3②;附:△ABC的判定:△ABC为直角△∠A+∠B=<△ABC为钝角△∠A+∠B<>△ABC为锐角△∠A+∠B>附:证明:,得在钝角△ABC中,在△ABC中,有下列等式成立.证明:因为所以,所以,结论!三角形的四个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.非零向量与有关系是:是方向上的单位向量练习题:一、平面向量的概念及其运算1、若向量满足,则与必须满足的条件为方向相同2、若,则等于(B)A.B.C.D.3、正六边形ABCDEF中,(D)A.B.C.D.4、在边长为1的正方形ABCD中,设,则=25、在中,已知,则等于(A)A.B.C.D.6、在中,E、F分别是AB和AC的中点,若,则等于(C)A.B.C.D.7、已知:向量同向,且,则1二、平面向量的基本定理及坐标表示8、若,且,则四边形ABCD是(C)A.是平行四边形B.菱形C.等腰梯形D.不等腰梯形9、已知且,试求点和的坐标199页(答案:)10、已知向量,则与同向的单位向量是(A)A.B.C.D.11、已知,则线段AB中点的坐标是(1,2)12、若三点共线,求(答案:)13、若向量与相等地,已知,则的值为(A)A.-1B.-1或-4C.4D.1或4三、线段的定比分点14、已知A、B、C三点在同一条直线上,且A(3,-6),B(-5,2),若点C的横坐标为6,求点C分所成的比及点C的纵坐标(答案:)15、若线段AB的端点,中点,则100、16、已知和A(6,3)两点,若点P在直线OA上,且,又P是的中点,则点B的坐标为(4,2)17、已知直线与轴,轴分别交于点A、B,的重心为(-1,3),则AB中点坐标为18、已知三个点,点C在上,且,连结DC并延长至E,使,则E点的坐标为(D)A.(0,1)B.(-8,)C.(0,1)或D.(,)19、已知点A关于R对称点是,则点到原点的距离是(D)A.B.C.4D.四、平面向量的数量积20、已知,,则与的夹角等于21、已知ABCD为菱形,则的值为022、已知,且,则向量在方向上的投影为23、已知向量与的夹角为,且,(1)求在方向上的投影(2)求(3)若向量与垂直,求实数的值(答案:(1)-2,(2),(3))24、已知、满足且,则25、若,且与不共线,则与的夹角为26、已知,且,求的坐标27、已知,若与的夹角为钝角,则的取值范围是(A)A.B.C.D.28、已知,则与的夹角为29、已知,若点在线段AB的中垂线上,则=五、平移30、把点A(3,4),按平移,求对应点的坐标(答案(4,6))31、把函数的图象按平移得到,求的函数解析式(答案)32、一个向量把点(2,-1)平移到(-2,1),它把点(-2,1)平移到(A)A.B.(-2,1)C.(6,-3)D.(-6,3)33、若向量使点(3,-9)平移到点(1,1),则将函数的图象,按平移后的解析式为(A)A.B.C.D.34、已知A(5,7)、B(2,3),将按向量平移后的坐标为(-3,-4)六、解斜三角形35、在中,已知,求(答案:)36、在中,已知,求(答案)37、在中,已知,求(答案7)38、在中,(1),求(2),求C(答案:(1)(2))39、若三角形的三边长分别为,5,6,则此三角形一定是(A)A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形40、在中,若,则为(B)A.直角三角形B.等腰三角形C.等边三角形D.等腰三角形或直角三角形41、在中,,则的值为(C)A.B.13C.D.942、已知三点A(1,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论