




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市钢城区实验学校2023-2024学年数学九上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形2.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()A.米 B.米 C.米 D.米3.如果,那么下列各式中不成立的是()A.; B.; C.; D.4.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣35.如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1786.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是()A. B. C. D.7.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为()A. B. C. D.8.若关于x的一元一次不等式组的解集是xa,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.69.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为_____.12.如图,若抛物线与直线交于,两点,则不等式的解集是______.13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.14.已知点与点关于原点对称,则__________.15.方程的解是_____________.16.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.17.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.18.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.三、解答题(共66分)19.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.20.(6分)如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.21.(6分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:每袋的售价(元)…2030…日销售量(袋)…2010…如果日销售量y(袋)是每袋的售价x(元)的一次函数,请回答下列问题:(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?(提示:每袋的利润=每袋的售价每袋的成本)22.(8分)已知二次函数.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.23.(8分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形中,,求与的度数之和;(2)如图2,为锐角的外心,过点的直线交,于点,,,求证:四边形是对半四边形;(3)如图3,在中,,分别是,上一点,,,为的中点,,当为对半四边形的对半线时,求的长.24.(8分)解下列方程:(1);(2).25.(10分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.26.(10分)综合与探究:三角形旋转中的数学问题.实验与操作:
Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据特殊四边形的判定方法进行判断.对角线相等的平行四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形是菱形;对角线互相垂直且相等的平行四边形是正方形2、A【分析】利用坡角的正弦值即可求解.【详解】解:∵∠ACB=90°,∠A=α,AB=600,∴sinα=,∴BC=600sinα.
故选A.【点睛】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.3、D【解析】试题分析:由题意分析可知:A中,,故不选A;B中,,故不选;C中,;D中,,故选D考点:代数式的运算点评:本题属于对代数式的基本运算规律和代数式的代入分析的求解4、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【点睛】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.5、A【分析】设道路的宽度为x米.把道路进行平移,使六块草坪重新组合成一个矩形,根据矩形的面积公式即可列出方程.【详解】解:设横、纵道路的宽为x米,把两条与AB平行的道路平移到左边,另一条与AD平行的道路平移到下边,则六块草坪重新组合成一个矩形,矩形的长、宽分别为(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,对图形进行适当的平移是解题的关键.6、D【分析】根据反比例函数系数k的几何意义,由△POM的面积为2,可知|k|=2,再结合图象所在的象限,确定k的值,则函数的解析式即可求出.【详解】解:△POM的面积为2,S=|k|=2,,又图象在第四象限,k<0,k=-4,反比例函数的解析式为:.故选D.【点睛】本题考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.7、D【解析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为,即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B点的坐标为.故选D.8、B【解析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【详解】解:由不等式组,解得:∵解集是x≤a,∴a<5;由关于的分式方程得得2y-a+y-4=y-1又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.9、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.10、B【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x==﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.二、填空题(每小题3分,共24分)11、2π【解析】通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S阴=π×(9-1)=2π.【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案为2π.【点睛】本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.12、【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【详解】解:设,,∵∴,∴即二次函数值小于一次函数值,∵抛物线与直线交点为,,∴由图象可得,x的取值范围是.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.13、-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得14、1【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.【详解】解:∵点P(a,-6)与点Q(-5,3b)关于原点对称,
∴a=5,3b=6,
解得:b=2,
故a+b=1.
故答案为:1.【点睛】此题考查关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15、x1=3,x2=-1【分析】利用因式分解法解方程.【详解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案为:x1=3,x2=-1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的方法解方程是关键.16、m≤且m≠1.【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.17、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.18、1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵==,解得:旗杆的高度=×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.三、解答题(共66分)19、(1)相切,证明见解析;(2)6.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=,∴,∴CD=BC=6,在Rt△ABC中,AC=.【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.20、△GAD或△ECH或△GFH,证△GAD∽△DBE.见解析.【分析】根据已知及相似三角形的判定方法即可找到存在的相似三角形.【详解】解:△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°.又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AGD+60°,∴∠BDE=∠AGD.∴△DBE∽△GAD.点睛:等量关系证明两对应角相等是关键,考查了三角形的性质及相似三角形的判定.21、(1);(2)P=;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.【分析】(1)用待定系数法即可求出一次函数的解析式;(2)根据日销售利润=每袋的利润×销售量即可得出日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)根据二次函数的性质求最大值即可.【详解】解:(1)设一次函数的表达式为:,将(,),(,)代入中得解得∴售量(袋)与售价(元)之间的函数表达式为.(2)()().(3)()(40)∴当时,∴当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.【点睛】本题主要考查二次函数的应用,掌握待定系数法是解题的关键.22、(1)证明见解析;(2).【分析】(1)根据二次函数图象与x轴交点关系求解;(2)根据对称轴公式求解.【详解】(1)证明:令y=0,则,∵△===∵≥0,∴>0∴无论取何实数,此二次函数的图像与轴都有两个交点.(2).∵对称轴为x=,∴k=2∴解析式为【点睛】考核知识点:二次函数的性质.23、(1);(2)详见解析;(3)5.25.【分析】(1)根据四边形内角和与对半四边形的定义即可求解;(2)根据三角形外心的性质得,得到,从而求出=60°,再得到,根据对半四边形的定义即可证明;(3)先根据为对半四边形的对半线得到,故可证明为等边三角形,再根据一线三等角得到,故,列出比例式即可求出AD,故可求解AC的长.【详解】(1)∵四边形内角和为∴,∵∴=则,∴(2)连结,由三角形外心的性质可得,所以,,所以,则在四边形中,,则另两个内角之和为,所以四边形为对半四边形;(3)若为对半线,则,∴所以为等边三角形∵∴又∴∵∴,∴∵F为DE中点,故∴∴【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知根据题意弄懂对半四边形,利用相似三角形的性质进行求解.24、(1),;(2),,【分析】(1)利用求根公式法解方程;(2)移项,然后利用因式分解法解方程.【详解】(1)解:,,∴∴,;(2)解:∴∴或∴,.【点睛】本题考查了解一元二次方程-因式分解法和公式法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.25、或.【详解】解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,设直线l解析式为:y=kx+b(k≠0),则解得∴直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家庭教育指导师考试试题及答案
- 2025年女性健康与发展课程考试试题及答案
- 一级建造师试题及答案
- 木材生产加工合同协议书
- 中国创意家居饰品市场深度调查报告
- 山东省日照市2024-2025学年高一下学期期中考试数学模拟试卷(解析)
- 瘢痕妊娠介入治疗
- 2025年软件定义存储项目发展计划
- 矿难救援卫星电话通信保障服务合同
- 大数据分析驱动的电商仓储物流托管合同
- 八年级物理下册《十一、十二章》阶段测试卷及答案(人教版)
- 纺织服装概论知到章节答案智慧树2023年西安工程大学
- 公司反舞弊及举报制度模版
- 货物验收单表格模板
- 丹东地方方言
- 罗斯公司理财Chap003全英文题库及答案
- 世界屋脊上的明珠布达拉宫课件
- 2023年江苏省泰州市泰兴市经济开发区(滨江镇)印桥社区工作人员考试模拟题及答案
- 中国国防及军队建设的成就
- 外国文学史第二版马工程课件 第六章 19世纪文学(上)
- chap02 机器视觉中的图像采集技术
评论
0/150
提交评论