市场调查与预测(第3版)生命曲线预测方法_第1页
市场调查与预测(第3版)生命曲线预测方法_第2页
市场调查与预测(第3版)生命曲线预测方法_第3页
市场调查与预测(第3版)生命曲线预测方法_第4页
市场调查与预测(第3版)生命曲线预测方法_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物的生长过程经历发生、发展到成熟三个阶段,在这三个阶段中生物生长速度是不一样的,例如,南瓜的增长速度,在第一阶段增长较慢,在成长时期则突然加快,而到了成熟期又趋减慢,形成一条S形曲线,这就是有名的生长曲线。生命曲线也可以是描述经济指标随时间变化呈某种生物变化规律的一种曲线。

在市场预测中,经常会碰到预测对象在其发展过程中呈现出与生物类似的发展过程。即在成长期快速增长、成熟(饱和期增长放慢)、衰退等各种不同形态。例如新技术、新产品的开发和更新换代过程,需求增长规律等均可用生命曲线来描述。这种方法是根据时间序列变化的历史数据,运用三和法、三点法。生命曲线预测方法一、例子1、人类成长的生命曲线年龄36912151821242730身高4876112140168172176178180181例1人类身高的成长曲线的生长规律如表7-1所示单位:cm年龄身高

图7-1人身高成长曲线第一节生命曲线的概念与模型例2如表7-2是南瓜重量随时间变化的生长曲线。天24681012141618202224克120200400100026003300380043004900510053005400图7-2南瓜重量生长曲线天重量2、生物生长的生命曲线例3

图7-3典型产品生命周期曲线导入期成长期成熟期衰推期t销量二阶差分

三阶差分

一阶差分环比指数注意:增长曲线模型在理论上的变化规律都遵循着一阶差分、二阶差分、三阶差分、一阶差分环比指数为一常数的特征。一阶差分补充知识:n阶差分(一)简单指数型增长曲线模型简单指数型增长曲线模型为:其中:a,b—参数,

t—时间序列,yt—经济目标值。如图7-4所示。b>10<b<1图7-4简单指数型增长曲线图(0,a)t(1)二、成长曲线预测模型的基本类型将(1)取对数,有:(2)(3)由(3)可知:①其曲线方程为一条直线。②为一阶差分为一常数。即:

结论:

当时间序列yt的环比指数大体相等,或时间序列的对数一阶差分近似为一常数,可用简单指数曲线来拟合实际曲线。结论∴当时间序列yt

的环比指数大体相等或大体相等时,可用修正指数曲线来拟合实际曲线。1、其模型为:(5)(二)修正指数型增长曲线模型

k>0,a<0,0<b<1y0=K+a图7-5修正曲线的几种类型tttt图(d)饱和后期图(a)饱和期图(b)成长期图(c)衰退期k>0,a>1,b>1k>0,a<0,b>1k>0,a>0,0<b<1修整曲线模型的几种类型图其模型为:

(1)(3)(2)结论:

龚柏兹曲线类似于修正曲线。(三)龚柏兹曲线模型

0<a<1,0<b<1y0=Ktttt图(d)衰退期图(a)成长期和成熟前期图(b)成长期后半期和衰退期图(c)成长期0<a<1,b>1a>1,b>1a>1,0<b<1y0=K龚柏兹曲线的几种类型图式中:k,a,b为待定参数.由(9)可得一阶、二阶导数为:(9)(10)k>0,a>10<b<1t图7-12y0=1/(k+a)(四)罗吉斯曲线其曲线模型yt=0y∞=1/k

罗吉斯曲线拐点左侧呈上凹趋势,过了该拐点后曲线转变为向下凹趋势。(1)当t=0时,有:yt=1/k+a,则yt=0和yt=1/k都是罗吉斯曲线的渐进线。(2)当t→∞时,yt→1/k

当t→-∞时,yt→0

罗吉斯曲线形状与龚柏兹曲线形状很相似,它所描述的经济变量的变化规律也是开始缓慢增长,而后逐渐加快,达到拐点后,增长率减缓,最后达到一临界值。(四)生命曲线预测法

是利用收集到的产品销售量的数据,组成一组时间序列,拟和某种成长曲线,对产品市场生命周期进行分析预测的方法。生命曲线预测法比一般直线趋势有着更广泛的应用,因为它可以反映出现象的相对发展变化程度。常用的生命曲线是指修正曲线、龚柏兹曲线、罗吉斯曲线。利用这三种曲线可描述产品市场生命周期的不同阶段,从而揭示产品生命周期销售何时由某一阶段向另一阶段的转变,预测产品的市场需求潜量、最大销售量以及达到饱和状态的时间等。增长曲线预测方法有三和法、三点法、最小二乘法等。当极限值k可确定,可采用最小二乘法可简化计算;不能确定时就用三和法或三点法。但三点法用在时间序列数据收集不全的情况下下面就重点介绍三和法。1、将时间序列分为项数相等的三段,每段的项数为r(r=n/3,n为时间序列总项数),若原序列项数不能被3整除,需删除序列最初一期或两期数据;2、时间序列t取值第一段,0,1,…,r-1;第二段,

r,r,…,2r-1;

第三段,

r,r,…,3r-1;3、分别求出序列每段数据的和,第一,第二,第三段数据的和分别用∑1Yt、∑2Yt

、∑3Yt

表示,

增长曲线中的参数估计,以修正曲线为例,具体步骤如下:解此方程组得:4、利用公式求出a,b,k用三和预测法确定成长曲线举例1

某地区电冰箱销售资料如表所示,试预测2005年的销售量和达到饱和状态的时间。某地区电冰箱销售资料单位:万台年份199619971998199920002001200220032004销售量256390498586656714762800830解:

(1)画散点图∵环比系数为0.81,0.81,0.80,0.83,0.79,0.79,大体相同,∴用修正曲线进行预测。N=9,r=3,t=0,1,2,……,8,计算得∑1Yt=1142,∑2Yt=1956,∑3Yt=2392123456789900600300在实际的应用中,怎样根据时间序列变化,建立生命曲线模型?选择哪一种模型最合适?这就涉及到生命增长曲线模型的识别问题。下面,介绍几种识别的方法。一、模型识别在识别模型之前,我们应根据图形的几种特性,掌握要识别模型的大概全貌,然后,才能识别模型。因此要注意以下几个方面:(一)图形的单调性利用y'判断。(某区间内)(二)极值利用y'和y"判断。(三)拐点

利用y'和y"判断。(四)对称性

利用拐点左右两端及与对称中心的极限之差进行比较确定。(五)时间性第二节生命曲线模型的识别二、预测模型的识别方法(一)目估法这种方法首先将图画出来,根据起图形,选择合适的模型。若构成指数形,可选择简单指数形或修正指数模型;若接近S形,可选择龚柏兹模型。特点:1、直观简便2、若数据不足,(不能画出完整的图形)对选择模型造成困难。(二)离差法(i=1,2,…,n)(三)增长特征法这种方法就是以研究动态序列的增长变化特征与增长曲线的相应特征为基础的一种识别方法。其基本点就是选择增长曲线在理论上的变化规律与样本序列的实际的变化规律最接近的一种曲线作为选择的最优曲线。具体方法如下:1、计算时间序列的滑动平均值。其目的是要消除时间序列中的随机因素,计算公式为:(9)2、计算时间序列的平均增长量。其公式为:(10)(10)是平均增长计算公式,主要是因为对动态时间序列选配趋势直线时,是以时间原点作为中心进行计算的。直线方程是:y=a+btb是平均增长,其计算公式为:3、计算时间序列的增长特征时间序列经过移动平均修匀后,的变化特征,可通过计算平均增长数及和来判断识别曲线的模型。如表7-7。

的平均增长特征平均增长特征对时间变化的性质曲线模型①基本一样直线方程②线性变化二次曲线方程③线性变化三次曲线方程④基本一样指数曲线方程⑤线性变化双指数曲线方程⑥线性变化龚柏兹曲线方程⑦线性变化罗吉斯曲线方程

表7-7增长特征法判别曲线模型应用1

某企业1993~2004年销售额如表7-8所示资料,试建立销售额的曲线模型。表7-81993~2004年销售额资料表年份199319941995199619971998199920002001200220032004销售额164193255279512606766838941105510881044思考:1、画出三点图,初步识别属于哪一类?

2、为识别增长曲线属于哪一种类型,可采用增长特征法进行识别。在这里我们用以3年为一个跨越期,求出,然后再求出。

3、分别计算出、、、与时间t的相关系数r,计算公式如下:具体计算结果如表7-9所示。年份t19931164-----19942199204----19953255242.372.350.29910857-2.90919964279348.7111.70.3202.048-3.03719975512465.7139.70.3002.145-3.19119986606628.0135.50.2162.132-3.46419997766736.7110.20.1502.042-3.69120008838848.3104.00.1232.017-3.83920019941944.789.90.1151.954-3.91520021010551028.058.80.0571.769-4.25620031110887062.3----2004121044-----表7-91993年~2004年销售额增长特征计算表由表7-9可知,的值基本保持不变。根据表7-7应选取双曲指数曲线模型。

在前面,介绍了对实际问题的模型识别,进行完了这一步工作后,还要确定预测方程里的参数(待定系数)后,才完成了建立预测模型。确定参数,以预测模型与实际模型之间的偏差为最小原则。通常是最小二乘法。由于非线性问题用最小二乘法,使得计算非常复杂,于是用三和法、三点法和优选法,下面分别介绍如下:一、最小二乘法(略)二、三和法

这种方法是将整个增长的时间序列分为三个相等的时间周期,并对每一个时间周期的数据求和后,再估计参数。它适用于“S”形的模型。现以修正指数方程应用“三和法”确定参数为例:第三节生命曲线模型的参数估计由修正指数方程,将时间序列分为三段,假定有3n段,每段为n。

第二段为:第三段为:则第一段各期的观察值求和为:(1)第一段为:(2)(3)将(2)-(1)和(3)-(2)得:(4)(5)(5)÷(4)有:(6)(7)(8)(9)(10)假设k=120,a=-60,b=0.5,各期的时间序列数据按的规律形成,当t=1,2,……,11的各时期,用三和法时,误差的大小对

a,b,k的影响。见表7-10分析误差的大小对参数的影响

表7-10随机误差εt对模型参数的影响计算表t060+2.462.4190+4.894.82105-6.099.03112.5+6.0118.5367.5374.74116.25-1.2115.055118.12+3.6121.726119.06-2.4116.667119.58+2.5122.03472.96475.468119.77+2.4122.179119.88+1.2121.0810119.94-4.8115.1411119.970119.97497.56478.36

当用第二列的数据去估算,其参数为a=-60,b=0.5,k=120。但用第4列的数据去估算时,b=0.3528,a=-67.5K=114,其模型为:由此可见,用三和法,随机因素的大小对参数影响很大。因此,用这种方法时,最好先用指数平滑法对时间序列滤去随机因素,再用此法。在式中,当:

三和法特点:1、对随机因素的干扰很敏感

2、时间序列变化范围小

3、收集的数据要完整。三、三点法这种方法是用在观察数据不全的情况下,假定曲线通过已知的相邻间隔相等的三个点(必要条件),现假设:(1)(3)(5)(6)(2)(4)(5)÷(6)有:(7)(8)将(7)代入(5)有:(9)将(9)代入(2)得:(10)将a,b,k代入(1),即可得预测模型。三点法的特点:1、在计算模型参数时,仅用了三个数据点,因而选用数据时,要尽量未受到随机因素干扰的数据,因此,在可能情况下,最好选均值。2、计算简单。应用2

现用三点法估算修正指数型增长曲线模型的各参数k、a和b。设曲线通过三点y0=15,y1=90,y2=125,且相邻两点之间的间距为6个时间单位(2P+1=6),则a<0,0<b<1

以上介绍“三和法”和“三点法”虽然在计算上简单,但精度较低。“最小二乘法”精度较高,但遇到非线性问题计算非常烦琐。为了简化计算,下面介绍在优选法的基础上利用“最小二乘法”简称“优选法”。具体方法如下:由龚柏兹曲线

(1)已知时间序列的历史统计数据为:若能通过某种方式首先估出参数k,(1)就可线性化了。即:(2)(3)四、优选法(4)有:令:由(3)可将(2)转化为:(4)其中:A,B为待定参数。由最小二乘法可得:(5)(6)

现来确定k,k的优选标准是使:则估计k的方法如下:1、根据预测对象的发展规律,试估计k的取值范围。例如,取2、按0.618法选取k的第一个估计值,计算k:并将代入(3),与历史数据算出的时间序列值组成新的时间序列数据,然后用最小二乘法估计参数A、B,再求出a1,b1.3、计算残差Qi4、按0.618法的步骤,继续对k作第二次选择试算。(7)(8)返回第二步,试估计出a、b并类似第三步求出残差平方和Q2:(9)5、对比Q1和Q2,按0.618法的基本原理,若Q2<Q1,则k的试算区间为,若Q1

<Q2略去(a)(b)若Q1

<Q2略去6、按0.618法,的优选步骤,在留下的区间内继续优选k值,直到选出一个使残差平方和最小的为止。

第四节生命预测法应用举例

已知某地区某商品1996~2004年销售额如表7-11所示,试预测2005和2006年的销售额各为多少万元?表7-111998~1996年销售额应用3年份199619971998199920002001200220032004销售额258503280044480560006496072080802808584089900图7-18销售额变化趋势图t销售额2、识别模型3、确定参数,建立模型(三和法、三点法、优选法)4、进行预测。1、根据销售额画出散点图分析:

根据散点图,曲线的变化趋势是一个S型的,为了确定合适的预测模型,需要计算时间序列数据的对数一阶差分及其环比指数,计算结果。解:(1)模型识别计算表7-12年份年次t销售额yi(万元)lgyty'ty't/y't-1(%)三段和∑相对误差(%)19960258504.4125--242316.23619971328004.51590.0034-34495-5.16819982444804.64810.1322127.8545155-1.51819993560004.74820.100175.72554420.99620004649604.81260.064464.34648320.19720015720804.85780.045270.1973045-1.33920026802804.90460.0468103.53799970.35320037858404.93370.029162.18857380.11920048899004.95380.020169.0790389-0.544∵

除了98、99年的一阶差分外,其他的都大体接近,∴可用龚柏兹曲线进行预测。表7-12(2)用三和法计算参数,建立预测模型取n=3,第一组:(0,25850),(1,32800),(2,44480);第二组:(3,56000),(4,64960),(5,72080);第三组:(6,80280),(7,85840),(8,89900)。①求每组销售额的对数之和:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论