版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章习题课A组·素养自测一、选择题1.分别在两个平行平面内的两条直线间的位置关系不可能为(B)A.平行 B.相交C.异面 D.垂直[解析]因为两平行平面没有公共点,所以两直线没有公共点,所以两直线不可能相交.2.已知PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是(C)A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC[解析]由PA⊥平面ACB⇒PA⊥BC,故A不符合题意;由BC⊥PA,BC⊥AC,PA∩AC=A,可得BC⊥平面PAC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.3.在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE︰EB=CF︰FB=1︰2,则对角线AC和平面DEF的位置关系是(A)A.平行 B.相交C.在平面内 D.不能确定[解析]如图,由eq\f(AE,EB)=eq\f(CF,FB)得AC∥EF.又因为EF⊂平面DEF,AC⊄平面DEF,所以AC∥平面DEF.4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是(D)A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α[解析]对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,不符合题意;同理,选项B、C也不符合题意;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件,故选D.5.(多选题)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确的命题是(ACD)A.① B.②C.③ D.④[解析]由题图,显然①是正确的,②是错误的;对于③,∵A1D1∥BC,BC∥FG,∴A1D1∥FG且A1D1⊄平面EFGH,FG⊂平面EFGH,∴A1D1∥平面EFGH(水面).∴③是正确的;对于④,∵水是定量的(定体积V),∴S△BEF·BC=V,即eq\f(1,2)BE·BF·BC=V.∴BE·BF=eq\f(2V,BC)(定值),即④是正确的,故选ACD.二、填空题6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有__3__个;与AP垂直的直线有__1__个.[解析]∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,又∵AP⊂平面PAC,∴AB⊥AP,与AP垂直的直线是AB.7.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且__________,则a∥b”为真命题,则可以在横线处填入的条件是__①或③__(填序号).[解析]由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.8.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是__①③[解析]如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α三、解答题9.如图,在圆锥PO中,AB是⊙O的直径,C是eq\o\ac(AB,\s\up10(︵))上的点,D为AC的中点.证明:平面POD⊥平面PAC.[证明]如图,连接OC,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面ABC,AC⊂底面ABC,所以AC⊥PO.因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.又AC⊂平面PAC,所以平面POD⊥平面PAC.10.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1求证:(1)直线DE∥平面A1C(2)平面B1DE⊥平面A1C[证明](1)在直三棱柱ABC-A1B1C1中,AC∥A1C1,在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1,又因为DE⊄平面A1C1F,A1C1⊂平面A1(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以AA1⊥A1C1,又因为A1C1⊥A1B1,A1B1∩AA1=A1,AA1⊂平面ABB1A1,A1B1⊂平面ABB1A1,所以A1C1⊥平面ABB1A1,因为B1D⊂平面ABB1又因为B1D⊥A1F,A1C1∩A1F=A1,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,所以B1D⊥平面A1C1F,因为直线B1DB组·素养提升一、选择题1.已知m,n是两条不同的直线,α,β是两个不同的平面,且n⊂β,则下列叙述正确的是(C)A.若m∥n,m⊂α,则α∥β B.若α∥β,m⊂α,则m∥nC.若m∥n,m⊥α,则α⊥β D.若α∥β,m⊥n,则m⊥α[解析]对于A,两个平面内各一条直线互相平行,不能保证两个平面互相平行,A错误;对于B,分别在两个互相平行的平面内的两条直线不能保证相互平行,B错误;对于C,两条平行线中的一条垂直于一个平面,可得另一条也垂直于这个平面,于是β内有一条直线垂直于α,故α⊥β,C正确;对于D,m垂直于β内的一条直线,不能保证m垂直于β,故不能得到m垂直于α,D错误.2.在长方体ABCD-A1B1C1D1中,AA1=AD=2AB.若E,F分别为线段A1D1,CC1的中点,则直线EF与平面ADD1A1所成角的正弦值为(A.eq\f(\r(6),3) B.eq\f(\r(2),2)C.eq\f(\r(3),3) D.eq\f(1,3)[解析]取DD1的中点G,连接EG、FG、EC1,易知∠FEG为直线EF与平面ADD1A1所成的角,设AB=a,则AA1=AD=2a,在△ED1C1中可求出EC1=eq\r(2)a,在△EFC1中可求出EF=eq\r(3)a,所以在△EFG中,sin∠FEG=eq\f(FG,EF)=eq\f(\r(3),3),故选C.3.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是(D)A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC[解析]因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体P-ABC中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面PAE,又DF∥BC,则DF⊥平面PAE,从而平面PDF⊥平面PAE.因此选项B、C均正确.4.如图所示,四边形ABCD中,AB=AD=CD=1,BD=eq\r(2),BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(B)A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′BCD的体积为eq\f(1,3)[解析]因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,所以CD⊥BA′.由勾股定理,得A′D⊥BA′.又因为CD∩A′D=D,所以BA′⊥平面A′CD,所以∠BA′C=90°.二、填空题5.已知直线l⊥平面α,垂足为A,直线PA⊥l,则AP与平面α的位置关系是__AP⊂α__.[解析]设AP与l确定的平面为β.假设AP⊄α,不妨设α∩β=AM,AP与AM不重合,如图所示.因为l⊥α,AM⊂α,所以l⊥AM.又AP⊥l,所以在平面β内,过点A有两条直线垂直于l,这与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,所以假设不成立.所以AP⊂α.6.如图所示,等边三角形ABC的边长为4,D为BC的中点,沿AD把△ADC折叠到△ADC′处,使二面角BADC′为60°,则折叠后二面角ABC′D的正切值为__2__.[解析]易知∠BDC′即二面角B-AD-C′的平面角,有∠BDC′=60°,所以△BDC′为等边三角形.取BC′的中点M,连接DM,AM,则易知DM⊥BC′,AM⊥BC′,所以二面角A-BC′-D的平面角即∠AMD.在等边三角形ABC中,易知AD=2eq\r(3),在等边三角形BDC′中,易知DM=eq\r(3),所以tan∠AMD=eq\f(AD,DM)=2.三、解答题7.(江苏高考题)如图所示,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.[证明](1)因为D,E分别为棱PC,AC的中点,所以DE∥PA.又PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=eq\f(1,2)PA=3,EF=eq\f(1,2)BC=4.又因为DF=5,所以DF2=DE2+EF2.所以∠DEF=90°.即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.8.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.[解析](1)证明:因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明:因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 型2024年度铁皮棚搭建安全合同
- 酒类采购合同
- 汽车钣金业务场地租赁2024年度合同:业务范围与权利义务
- 基于物联网的智能家居控制系统合同(2024版)
- 2024年度工程建设项目合同争议解决合同2篇
- 专业技术人员聘用合同
- 《生物期末考试复习》课件
- 化学必修一课件下载
- 房屋装修承包合同
- 物业保安外包合同
- 国开2024年秋《机电控制工程基础》形考任务3答案
- 【WEZO】2024社交媒体全球使用趋势报告
- 美学与人生智慧树知到期末考试答案2024年
- GB/T 3953-2024电工圆铜线
- 食材供应商考核评分表
- 形式发票--INVOICE(跨境-)
- 《文殊真实名经》
- 模具零件检验规范(DOC5页)
- 培训资料:马利克管理
- 《北洋政府的统治和军阀割据》听课报告
- (word完整版)1-100儿童数字连线图 共110张
评论
0/150
提交评论