山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题含解析_第1页
山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题含解析_第2页
山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题含解析_第3页
山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题含解析_第4页
山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁地区2023-2024学年八年级数学第一学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)2.下列几组数中,为勾股数的是()A.4,5,6 B.12,16,18C.7,24,25 D.0.8,1.5,1.73.计算的结果是()A. B.-4 C. D.4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是5.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.6.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,127.如图,下面推理中,正确的是()A.∵∠DAE=∠D,∴AD∥BC B.∵∠DAE=∠B,∴AB∥CDC.∵∠B+∠C=180°,∴AB∥CD D.∵∠D+∠B=180°,∴AD∥BC8.如图,的周长为,分别以为圆心,以大于的长为半径画圆弧,两弧交于点,直线与边交于点,与边交于点,连接,的周长为,则的长为()A. B. C. D.9.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()A.1个; B.2个;C.3个; D.4个.10.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A.105° B.120° C.135° D.150°二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.12.如图,中,,的周长是11,于,于,且点是的中点,则_______.13.已知多边形的内角和等于外角和的三倍,则边数为___________.14.81的平方根是__________;的立方根是__________.15.如图,在中,有,.点为边的中点.则的取值范围是_______________.16.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数)当x=7千克时,售价y=______元.17.已知点A(−2,0),点P是直线y=34x上的一个动点,当以A,O,P为顶点的三角形面积是3时,点P18.x+=3,则x2+=_____.三、解答题(共66分)19.(10分)解方程组:.(1)小组合作时,发现有同学这么做:①+②得,解得,代入①得.∴这个方程组的解是,该同学解这个方程组的过程中使用了消元法,目的是把二元一次方程组转化为.(2)请你用另一种方法解这个方程组.20.(6分)如图,已知△ABC中,∠BAC>90°,请用尺规求作AB边上的高(保留作图痕迹,不写作法)21.(6分)(1)计算:;(2)求中的的值.22.(8分)某次歌唱比赛,三名选手的成绩如下:测试项目测试成绩甲乙丙创新728567唱功627776综合知识884567(1)若按三项的平均值取第一名,谁是第一名;(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?23.(8分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.24.(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,以为边作正方形,请解决下列问题:(1)求点和点的坐标;(2)求直线的解析式;(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.25.(10分)如图,在中,,点分别在边上,且,.(1)求证:是等腰三角形.(2)若为等边三角形,求的度数.26.(10分)如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.

参考答案一、选择题(每小题3分,共30分)1、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.2、C【分析】根据勾股数的定义:满足的三个正整数,称为勾股数解答即可.【详解】解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足,还要是正整数.3、D【解析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【详解】原式=1×=,故选:D【点睛】此题考查零指数幂,负整数指数幂,解题关键在于掌握运算法则4、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数5、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.6、A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.7、C【分析】利用平行线的判定方法一一判断即可.【详解】解:∵∠B+∠C=180°,∴AB//CD,故选C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.8、A【分析】将△GBC的周长转化为BC+AC,再根据△ABC的周长得出AB的长,由作图过程可知DE为AB的垂直平分线,即可得出BF的长.【详解】解:由作图过程可知:DE垂直平分AB,∴BF=AB,BG=AG,又∵△GBC的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26-BC-AC=12,∴BF=AB=6.故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC的长,突出了“转化思想”.9、C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.

①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选C.【点睛】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.10、B【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【详解】∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.二、填空题(每小题3分,共24分)11、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【详解】∵DE垂直平分AB,

∴AD=BD,

∵AB=AC,△ABC的周长为26,BC=6,

∴AB=AC=(26-6)÷2=10,

∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【点睛】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.12、【分析】根据直角三角形斜边上的中线等于斜边的一半可得,,通过计算可求得AB,再利用勾股定理即可求得答案.【详解】∵AF⊥BC,BE⊥AC,D是AB的中点,

∴,∵AB=AC,AF⊥BC,

∴点F是BC的中点,∴,

∵BE⊥AC,

∴,∴的周长,

∴,在中,即,解得:.故答案为:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质以及勾股定理,熟记各性质是解题的关键.13、1【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n的值.【详解】解:设边数为n,由题意得:110(n﹣2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和与外角和定理:多边形的内角和(n﹣2)•110°(n≥3)且n为整数),多边形的外角和等于360度.14、±9【分析】根据平方根及立方根的定义即可求出答案.【详解】根据平方根的定义可知81的平方根是±9,的立方根是.故答案为:±9,.【点睛】本题考查了平方根及立方根的知识,难度不大,主要是掌握平方根及立方根的定义.15、【分析】根据题意延长AD至E,使DE=AD,根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,任意两边只差小于第三边求出AE,然后求解即可.【详解】解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB=5,∵AC=7,∴5+7=12,7-5=2,∴2<AE<12,∴1<AD<1.故答案为:1<AD<1.【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”构造出全等三角形是解题的关键.16、22.5元【分析】根据表格的数据可知,x与y的关系式满足一次函数,则设为,然后利用待定系数法求出解析式,然后求出答案即可.【详解】解:根据题意,设y关于x的一次函数:y=kx+b,当x=0.5,y=1.6+0.1=1.7;当x=1,y=3.2+0.1=3.3;将数据代入y=kx+b中,得,解得:∴一次函数为:y=3.2x+0.1;当x=7时,;故答案为:.【点睛】此题主要考查了一次函数的性质,关键是看懂表格中数据之间的关系.17、(4,3)或(-4,-3)【解析】依据点P是直线y=34x上的一个动点,可设P(x,34x),再根据以A,O,P为顶点的三角形面积是3,即可得到x的值,进而得出点【详解】∵点P是直线y=34x上的一个动点,

∴可设P(x,34x),

∵以A,O,P为顶点的三角形面积是3,

∴12×AO×|34x|=3,

即12×2×|34x|=3,

解得x=±4,

∴P(4,3)或(-4,-3),

故答案是:(4,【点睛】考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.18、1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.三、解答题(共66分)19、(1)加减,一元一次方程;(2)见解析【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)先把①变形为x=11-y代入②求出y的值,再把y代入①求出x的值.【详解】解:(1)①+②得:,解得:,把代入①得:,解得:,∴这个方程组的解是,故答案为:加减,一元一次方程;(2)由①变形得:,把③代入②得:,解得:,把代入①得:,解得:,∴这个方程组的解是.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20、如图所示,CD即为所求.见解析.【解析】以三角形的点C为圆心,以适当长度为半径划弧,和AB的延长线交于两点,分别以这两个交点为圆心,以大于二分之一的两交点间的距离为半径划两弧,其交点为F,连接FC即可.【详解】如图所示,CD即为所求.【点睛】本题考查的是作图,熟练掌握尺规作图是解题的关键.21、(1)-3;(2)或【分析】(1)根据负整数指数幂和零次幂的性质以及立方根的定义,即可求解,(2)根据直接开平方法,即可求解.【详解】(1)原式;(2)∵,∴,∴或.【点睛】本题主要考查实数的混合运算以及解一元二次方程,掌握负整数指数幂和零次幂的性质以及直接开平方法,是解题的关键.22、(1)甲将得第一名;(2)乙将得第一名.【分析】(1)先根据平均数计算各人的平均分,再比较即可;(2)按照权重为3:6:1的比例计算各人的测试成绩,再进行比较.【详解】解:(1)甲的平均成绩为(72+62+88)=74分乙的平均成绩为(85+77+45)=69分丙的平均成绩为(67+76+67)=70分因此甲将得第一名.(2)甲的平均成绩为=67.6分乙的平均成绩为=76.2分丙的平均成绩为=72.4分因此乙将得第一名.【点睛】本题考查了算术平均数和加权平均数的计算,掌握公式正确计算是解题关键.23、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(1)得:点A、B的坐标分别为:,则,,设直线AB的解析式为:,∴解得:∴直线AB的解析式为:,∵∴作⊥轴于,∴,∴,∴点的横坐标为,又点在直线AB上,∴,∴点的坐标为;②由(1)得:点A、B的坐标分别为:,则,,∴,,∴点的坐标为,设直线AM的解析式为:,∴解得:∴直线AM的解析式为:,根据题意,平移后点,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,如图1,∴∥,∵,∴,则,为最小值,即点为所求,则点N的横坐标与点的横坐标相同都是,点N在直线AM上,∴,∴点的坐标为,∴,;(3)根据题意得:点的坐标分别为:,设直线的解析式为:,∴,解得:,∴直线BD的解析式为:,设点,同理直线的解析式为:,∵,∴设直线的解析式为:,当时,,则,则直线的解析式为:,故点的坐标为,即,①当为直角时,如下图,∵为等腰直角三角形,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;②当为直角时,如下图,作于,∵为等腰直角三角形,∴,,∴∥轴,、和都是底边相等的等腰直角三角形,∴,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;③当为直角时,如下图,同理可得点的坐标为,将点的坐标代入直线的解析式并解得:,故点;综上,点的坐标为:或或.【点睛】本题考查的是一次函数综合运用,待定系数法求函数解析式、涉及到线段和的最值、等腰直角三角形的性质等,其中(3)要注意分类求解,避免遗漏.24、(1)点,点;(2);(3)点,点.【分析】(1)根据待定系数法,可得直线的解析式是:,进而求出,过点作轴于点,易证,从而求出点D的坐标;(2)过点作轴于点,证得:,进而得,根据待定系数法,即可得到答案;(3)分两种情况:点与点重合时,点与点关于点中心对称时,分别求出点P的坐标,即可.【详解】(1)经过点,,直线的解析式是:,当时,,解得:,点,过点作轴于点,在正方形中,,,,,,,在和中,∵,∴,,点;(2)过点作轴于点,同上可证得:,∴CM=OB=3,BM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论