山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第1页
山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第2页
山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第3页
山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第4页
山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁市嘉祥一中2023-2024学年高一数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台2.三个数的大小关系是()A. B.C. D.3.已知,,且,则的最小值为()A.4 B.9C.10 D.124.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.5.已知函数是R上的单调函数,则实数a的取值范围是()A. B.C. D.6.已知幂函数的图象过(4,2)点,则A. B.C. D.7.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.18.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.579.已知,则().A. B.C. D.10.已知集合,,则集合A. B.C. D.11.一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时 B.2小时C.2.5小时 D.3小时12.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.集合,,则__________.14.已知,则___________.(用含a的代数式表示)15.若函数在区间上单调递减,则实数的取值范围是__________16.已知函数,x0R,使得,则a=_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知实数,定义域为的函数是偶函数,其中为自然对数的底数(Ⅰ)求实数值;(Ⅱ)判断该函数在上的单调性并用定义证明;(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由18.已知函数(1)求函数的最小正周期和单调递增区间;(2)若,且,求的值.19.已知函数为偶函数.(1)判断在上的单调性并证明;(2)求函数在上的最小值.20.已知直线经过直线与直线的交点,且与直线垂直.(1)求直线的方程;(2)若直线与圆相交于两点,且,求的值.21.通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?(以下数据供参考:,)22.已知平面上点,且.(1)求;(2)若点,用基底表示.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.2、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A3、B【解析】将展开利用基本不等式即可求解.【详解】由,,且得,当且仅当即,时等号成立,的最小值为,故选:B.4、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A5、B【解析】可知分段函数在R上单调递增,只需要每段函数单调递增且在临界点处的函数值左边小于等于右边,列出不等式即可【详解】可知函数在R上单调递增,所以;对称轴,即;临界点处,即;综上所述:故选:B6、D【解析】设函数式为,代入点(4,2)得考点:幂函数7、B【解析】令,可以求得,即可求出解析式,进而求出函数值.【详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【点睛】本题主要考查函数单调性和函数的表示方法,属于中档题.8、B【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.9、C【解析】将分子分母同除以,再将代入求解.【详解】.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.10、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.11、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D12、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.14、【解析】利用换底公式化简,根据对数的运算法则求解即可【详解】因为,所以故答案为:.15、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案16、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ)1;(Ⅱ)在上递增,证明详见解析;(Ⅲ)不存在.【解析】(Ⅰ)根据函数是偶函数,得到恒成立,即恒成立,进而得到,即可求出结果;(Ⅱ)任取,且,根据题意,作差得到,进而可得出函数单调性;(Ⅲ)由(Ⅱ)知函数在上递增,由函数是偶函数,所以函数在上递减,再由题意,不等式恒成立可化为恒成立,即对任意的恒成立,根据判别式小于0,即可得出结果.【详解】(Ⅰ)因为定义域为的函数是偶函数,则恒成立,即,故恒成立,因为不可能恒为,所以当时,恒成立,而,所以(Ⅱ)该函数在上递增,证明如下设任意,且,则,因为,所以,且;所以,即,即;故函数在上递增(Ⅲ)由(Ⅱ)知函数在上递增,而函数是偶函数,则函数在上递减.若存在实数,使得对任意的,不等式恒成立.则恒成立,即,即对任意的恒成立,则,得到,故,所以不存在【点睛】本主要考查由函数奇偶性求参数,用单调性的定义判断函数单调性,以及由不等式恒成立求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型.18、(1)(2)【解析】(1)运用两角和(差)的正弦公式、二倍角的正余弦公式、辅助角公式化简函数的解析式,最后根据正弦型函数的最小正周期公式进行求解即可;(2)运用换元法,结合正弦函数的性质进行求解即可.【小问1详解】故的最小正周期为,由得,所以增区间是;【小问2详解】由(1)知由得:,因为,所以,所以19、(1)在上单调递增,证明见解析(2)【解析】(1)先利用函数的奇偶性求得,然后利用单调性的定义证得,从而证得在上递增.(2)利用换元法化简,对进行分类讨论,结合二次函数的性质求得在上的最小值.【小问1详解】为偶函数,,即,,则.所以.在为增函数,证明如下:任取,,且,,,,,.即,在上单调递增.【小问2详解】,令,结合题意及(1)的结论可知.,.①当时,;②当时,;③当时,.综上,.20、(1);(2)或.【解析】(1)由解得P的坐标,再求出直线斜率,即可求直线的方程;(2)若直线与圆:相交由垂径定理列方程求解即可.【详解】(1)由得所以.因为,所以,所以直线的方程为,即.(2)由已知可得:圆心到直线的距离为,因为,所以,所以,所以或.【点睛】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小21、(1)4.5(2)1000【解析】(1)把最大振幅和标准振幅直接代入公式M=lgA-lg求解;(2)利用对数式和指数式的互化由M=lgA-lg得A=,把M=8和M=5分别代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论