版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省乐陵一中2024年高考考前提分数学仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.2.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A. B. C. D.3.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或4.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.65.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.6.展开项中的常数项为A.1 B.11 C.-19 D.517.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.168.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.9.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.10.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.11.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.12.函数的图象大致是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为__________.14.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.15.复数为虚数单位)的虚部为__________.16.若函数在区间上有且仅有一个零点,则实数的取值范围有___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.18.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.19.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.20.(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.21.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.22.(10分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.2、B【解析】
由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴,可得,又,,可解得,故双曲线的离心率是.故选B.【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.3、C【解析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.4、D【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.5、A【解析】
求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.6、B【解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.7、D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.8、B【解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.9、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.10、A【解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.11、D【解析】
设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法12、C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
分别用1和进行分类讨论即可【详解】当第一个因式取1时,第二个因式应取含的项,则对应系数为:;当第一个因式取时,第二个因式应取含的项,则对应系数为:;故的展开式中的系数为.故答案为:3【点睛】本题考查二项式定理中具体项对应系数的求解,属于基础题14、【解析】
根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,,所以时,;由,所以,所以函数是以为周期的函数,,又函数为奇函数,所以.故答案为:【点睛】本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.15、1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算16、或【解析】
函数的零点方程的根,求出方程的两根为,,从而可得或,即或.【详解】函数在区间的零点方程在区间的根,所以,解得:,,因为函数在区间上有且仅有一个零点,所以或,即或.【点睛】本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.【解析】
(1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.(2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.(3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.【详解】(1)尺寸在的频率:尺寸在的频率:且所以可知尺寸的中位数落在假设尺寸中位数为所以所以这个零件尺寸的中位数(2)尺寸在的个数为尺寸在的个数为的所有可能取值为1,2,3,4则,,所以的分布列为(3)二等品的概率为如果对余下的零件进行检验则整箱的检验费用为(元)余下二等品的个数期望值为如果不对余下的零件进行检验,整箱检验费用与赔偿费用之和的期望值为(元)所以,所以可以不对余下的零件进行检验.【点睛】本题考查频率分布直方图的应用,掌握中位数,平均数,众数的计算方法,中位数的理解应该从中位数开始左右两边的频率各为0.5,考验分析能力以及数据处理,属中档题.18、(1)不是,见解析(2)(3)【解析】
(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【详解】(1)当时,又,所以.所以当时,,而,所以时,不是数列中的项,故数列不是为“数列”(2)因为数列是公差为的等差数列,所以.因为数列为“数列”所以任意,存在,使得,即有.①若,则只需,使得,从而得是数列中的项.②若,则.此时,当时,不为正整数,所以不符合题意.综上,.(3)由题意,所以,又因为,且数列为“数列”,所以,即,所以数列为等差数列.设数列的公差为,则有,由,得,整理得,①.②若,取正整数,则当时,,与①式对应任意恒成立相矛盾,因此.同样根据②式可得,所以.又,所以.经检验当时,①②两式对应任意恒成立,所以数列的通项公式为.【点睛】本题考查数列新定义题、等差数列的通项公式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度较大.19、(1)见解析(2)【解析】
(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:∵为等边三角形,为的中点,∴∵平面底面,平面底面,∴底面平面,∴又由题意可知为正方形,又,∴平面平面,∴平面平面(2)如图建立空间直角坐标系,则,,,由已知,得,设平面的法向量为,则令,则,∴由(1)知平面的法向量可取为∴∴平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】
(Ⅰ)根据茎叶图求出满足条件的概率即可;(Ⅱ)结合图表得到6人中有2个人考核为优,从而求出满足条件的概率即可;(Ⅲ)求出满足的成绩有16个,求出满足条件的概率即可.【详解】解:(Ⅰ)设这名学生考核优秀为事件,由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀,所以所求概率约为(Ⅱ)设从图中考核成绩满足的学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政治教师个人工作总结五篇
- 消防安全教育课件
- 物业经理个人年终工作总结
- 精细化管理与食品安全
- -医生转正试用期工作总结
- 中学生心理健康课件
- 巡防工作总结
- 三年级数学教学计划15篇
- 学校宣传工作计划5篇
- 学生自我评价合集15篇
- 昆明理工大学《自然语言处理》2022-2023学年第一学期期末试卷
- 陈义小学进城务工人员随迁子女入学工作制度和措施
- 部编版六年级道德与法治上册第9课《知法守法 依法维权》精美课件(第2课时)
- 小儿急腹症观察和护理
- 统编版七年级上学期期末考试语文试卷(含答案)
- 《长江电力财务分析》课件
- 2023年中国铁路武汉局集团有限公司招聘大专(高职)学历笔试真题
- 中考英语复习听说模拟训练(一)课件
- 公立医院创新管理薪酬激励方案
- 药品经营使用和质量监督管理办法2024年宣贯培训课件
- 旅社承包合同样本
评论
0/150
提交评论